

Immunopharmacogenomics and Adverse Drug Reactions

Munir Pirmohamed

David Weatherall Chair of Medicine, University of Liverpool

Email: munirp@liverpool.ac.uk

🈏 : @MPUoL



Adverse Drug Reactions: Classification

ON TARGET REACTIONS

- Predictable from the known primary or secondary pharmacology of the drug
- Clear dose-dependence relationship within the individual

• OFF TARGET REACTIONS

- Not predictable from a knowledge of the basic pharmacology of the drug and can exhibit marked interindividual susceptibility
- Complex dose-dependence

UNIVERSITY OF LIVERPOOL

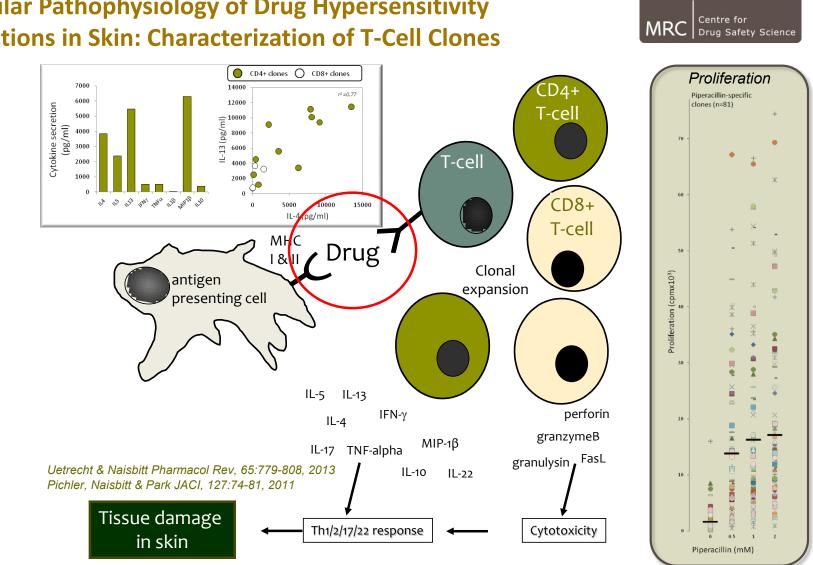
THE WOLFSON CENTRE FOR PERSONALISED MEDICINE

Hypersensitivity

an inappropriate immune response leading to tissue damage from an otherwise non-toxic agent

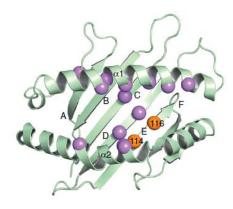
Immune-Mediated Adverse Drug Reactions

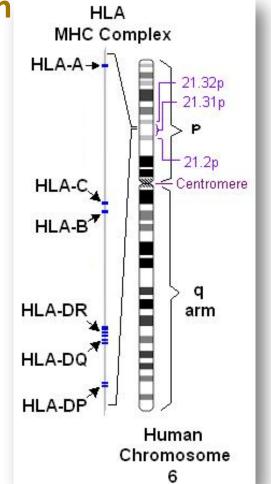
		type	mediated by	pathogenesis	clinical presentation (examples)	
	BCR B cell	۱ ۱	lgE ⊣⊣⊣	degranulation of basophils and mast cells	urticaria, anaphylaxis	
		→ II	$\lg G/M \prec \prec$	cell lysis	blood dyscrasia	
		` III	lgG/M ⊸↔	deposition of immunocomplexes	vasculitis	
		IVa	Th1 IFN-γ	activation of monocytes and macrophages	eczema	
	TCR T cell	IVb ہے	Th2 IL-4, IL-5	activation of eosinophils	maculopapular/ bullous exanthema	
		► IVc	CTL perforin, granzyme B	cytotoxicity	maculopapular/ bullous/pustular exanthema	
		IVd	Tcell IL-8	chemoattraction and activation of neutrophils	pustular exanthema	
UNIVERSITY OF LIVERPOOL THE WOLFSON CENTRE FOR PERSONALISED MEDICINE						



Philip Gell

Robin Coombs

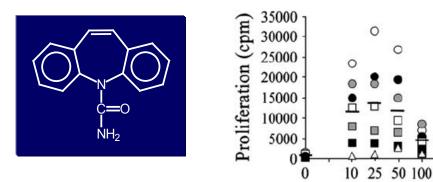


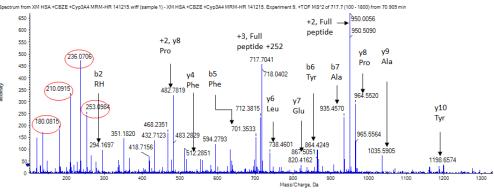

Cellular Pathophysiology of Drug Hypersensitivity Reactions in Skin: Characterization of T-Cell Clones

Serious Adverse Drug Reactions an Human Leucocyte Antigens (HLA)

- On short arm of chromosome 6
- Involved in the pathogenesis of immune-mediated adverse drug reactions

Abacavir hypersensitivity *HLA-B*57:01* Decrease incidence from 7% to <1%





Carbamazepine Hypersensitivity

- More complicated than abacavir hypersensitivity
- Different phenotypes
 - ▶ Skin (mild \rightarrow blistering)
 - Liver
 - Systemic (DRESS)
- Complex metabolism with over 30 metabolites
 - Bioactivation to toxic metabolites via different pathways
 - In vitro studies parent compound leads to immune reactions via several mechanisms

¹⁴⁵RH([O]CBZ)PYFYAPELLFFAK¹⁵⁹

Carbamazepine-modified HSA at His146

HLA Genotype and Carbamazepine-Induced Cutaneous Adverse Drug Reactions: A Systematic Review

VL Yip1, AG Marson2, AL Jorgensen3, M Pirmohamed1 and A Alfirevic1

HLA-B*1502

HLA-B*1502 positive HLA-B*1502 Negative Odds ratio Odds ratio Study or subgroup Events Total Events Total Weight M-H, random, 95% Cl Year M-H, random, 95% CI 1.1.1 Han Chinese 59 65 139 13.8% 1357.00 [159.84, 11520.40] Huna 2006 1 2006 12 Wu 2010 8 0 46 7.0% 175.67 [8.64, 3570.35] 2010 6 22 0 60 7.4% 47.67 [2.55, 890.45] 2010 Liao 2010 Zhang 2011 16 18 1 20 10.2% 152.00 [12.59, 1834.92] 2010 9 20 0 69 7.4% 114.83 [6.25, 2110.92] 2011 Wang 2011 137 334 45.7% 236.24 [71.72, 778.11] Subtotal (95% CI) 2 Total events 98 Heterogeneity: $\tau^2 = 0.05$; $\chi^2 = 4.11$, df = 4 (P = 0.39); I² = 3% Test for overall effect: Z = 8.99 (P < 0.00001) 1.1.2 Thai Locharernkul 2008 6 14 0 34 7.1% 52.76 [2.70, 1031.31] 2008 Tassaneeyakul 2010 37 42 5 42 36.2% 54.76 [14.62, 205.13] 2010 6 13 0 33 7.1% 58.07 [2.94, 1147.12] 2011 Kulkantrakorn 2012 69 54.92 [17.94, 168.14] 109 50.4% Subtotal (95% CI) 49 5 Total events Heterogeneity: $\tau^2 = 0.00$; $\chi^2 = 0.00$, df = 2 (P = 1.00); $I^2 = 0\%$ Test for overall effect: Z = 7.02 (P < 0.00001) 1.1.3 Malaysian Then 2011 6 6 0 8 3.8% 221.00 [3.85, 12694.65] 2011 Subtotal (95% CI) 6 8 3.8% 221.00 [3.85, 12694.65] 0 6 Total events Heterogeneity: Not applicable Test for overall effect: Z = 2.61 (P = 0.009) Total (95% CI) 212 451 100.0% 113.39 [51.24,250.97] 7 Total events 153 Heterogeneity: $\tau^2 = 0.00$; $\chi^2 = 7.43$, df = 8 (P = 0.49); I^2 = 0% 0.001 0.1 10 1000 Test for overall effect: Z = 11.67 (P < 0.00001) HLA-B*1502 less likely HLA-B*1502 more likely Test for subgroup differences: $\chi^2 = 3.17$, df = 2 (P = 0.20); $I^2 = 36.9\%$

for afety Science

N Engl J Med 2011;364:1126-33.

- To prospectively identify subjects at risk for SJS
- 4877 CBZ naive subjects from 23 hospitals
- 372 (7.7%) were HLA-B*1502 were positive NOT given CBZ
- No patients developed SJS (compared with historical controls)

- Recommended for testing in US, European and SE Asian drug labels prior to drug prescription
- In patients of SE Asian origin
- Has reduced incidence of SJS/TEN where testing has been undertaken

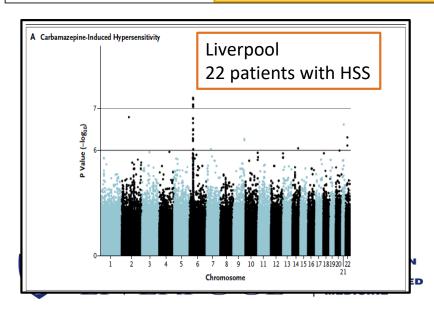
The NEW ENGLAND JOURNAL of MEDICINE

HOME ARTICLES * ISSUES *

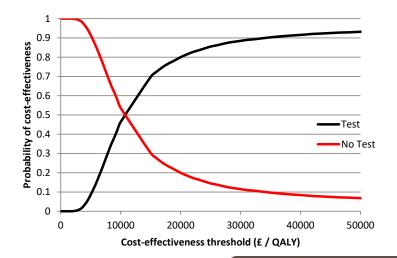
FOR AUTHORS *

Keyword, Title,

ORIGINAL ARTICLE


HLA-A*3101 and Carbamazepine-Induced Hypersensitivity Reactions in Europeans

SPECIALTIES & TOPICS *


Mark McCormack, B.A., Ana Alfirevic, M.D., Ph.D., Stephane Bourgeois, Ph.D., John J. Farrell, M.S., Dalia Kasperavičiūtė,
Ph.D., Mary Carrington, Ph.D., Graeme J. Sills, Ph.D., Tony Marson, M.B., Ch.B., M.D., Xiaoming Jia, M.Eng., Paul LW. de Bakker,
Ph.D., Krishna Chinthapalli, M.B., B.S., Mariam Molokhia, M.B., Ch.B., Ph.D., Michael R. Johnson, D.Phil, Gerard D. O'Connor,
M.R.C.P.I., Elijah Chaila, M.R.C.P.I., Saud Alhusaini, M.B., Kevin V. Shianna, Ph.D., Rodney A. Radtke, M.D., Erin L. Heinzen,
Ph.D., Nicole Walley, B.S., Massimo Pandolfo, M.D., Ph.D., Werner Pichler, M.D., B. Kevin Park, Ph.D., Chantal Depondt, M.D.,
Ph.D., Sanjay M. Sisodiya, M.D., Ph.D., David B. Goldstein, Ph.D., Panos Deloukas, Ph.D., Norman Delanty, B.M., Gianpiero L. Cavalleri, Ph.D., and Munir Pirmohamed, Ph.D., F.R.C.P.

N Engl J Med 2011; 364:1134-1143 March 24, 2011

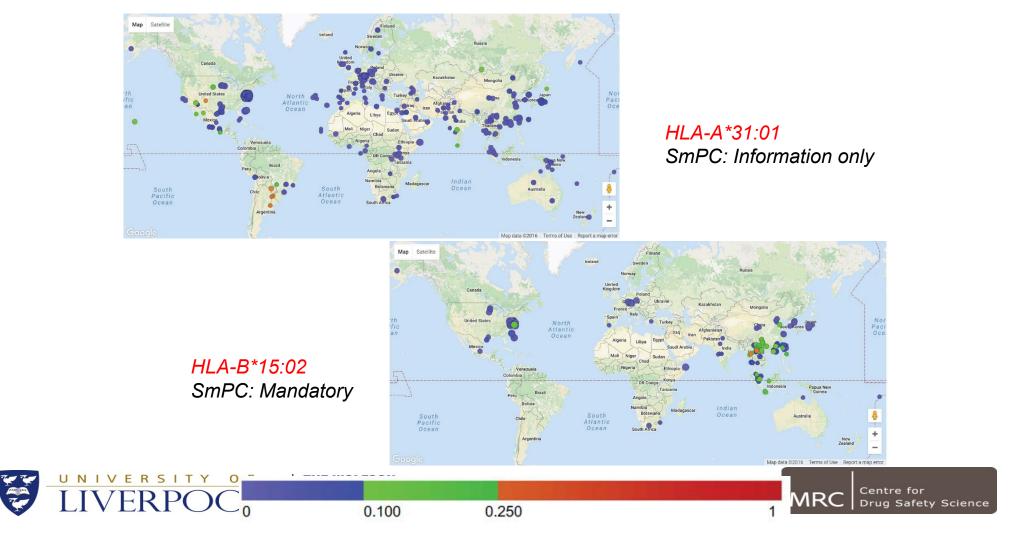
N Engl J Med 2011;364:1134-43.

- Replicated in Japanese, Chinese, South Korean, Canadian and EU populations
- NNT = 47
- Cost-effective

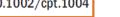
JAMA Neurology | Original Investigation

Association of HLA-A*31:01 Screening With the Incidence of Carbamazepine-Induced Cutaneous Adverse Reactions in a Japanese Population

Taisei Mushiroda, PhD; Yukitoshi Takahashi, MD, PhD; Teiichi Onuma, MD, PhD; Yoshiaki Yamamoto, PhD; Tetsumasa Kamei, MD; Tohru Hoshida, MD; Katsuya Takeuchi, MD, PhD; Kotaro Otsuka, MD, PhD; Mitsutoshi Okazaki, MD, PhD; Masako Watanabe, MD, PhD; Kosuke Kanemoto, MD, PhD; Tomohiro Oshima, MD, PhD; Atsushi Watanabe, MD, PhD; Shiro Minami, MD, PhD; Kayoko Saito, MD, PhD; Hisashi Tanii, MD, PhD; Yasushi Shimo, MD, PhD; Ninoru Hara, MD; Shinji Saitoh, MD, PhD; Toshihiko Kinoshita, MD, PhD; Masaki Kato, MD, PhD; Naoto Yamada, MD, PhD; Naoki Akamatsu, MD, PhD; Toshihiko Fukuchi, MD; Shigenobu Ishida, MD; Shingo Yasumoto, MD, PhD; Atsushi Takahashi, PhD; Takeshi Ozeki, PhD; Takahisa Furuta, MD, PhD; Yoshiro Saito, PhD; Nobuyuki Izumida, MEcon; Yoko Kano, MD, PhD; Tetsuo Shiohara, MD, PhD; Michiaki Kubo, MD, PhD; for the GENCAT Study Group


- Prospective study in 36 hospitals in 1202 patients
- HLA-A*31:01 patients given other drugs (17.5% positive)
- 23 patients (2%) had cutaneous ADRs (no patients SJS/TEN; 3 DRESS)
- Compared with historical controls, genotyping reduced the incidence of cADRs by 40-60%
- Warranted in clinical practice

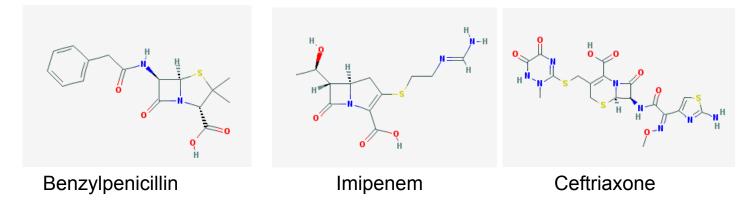
JAMA Neurol. doi:10.1001/jamaneurol.2018.0278 Published online April 2, 2018.



HLA-A*31:01 and B*15:02 Allele Frequencies

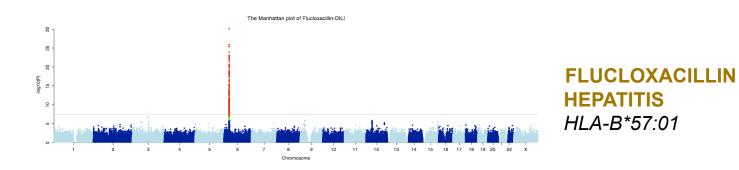
Clinical Pharmacogenetics Implementation Consortium Guideline for HLA Genotype and Use of Carbamazepine and Oxcarbazepine: 2017 Update

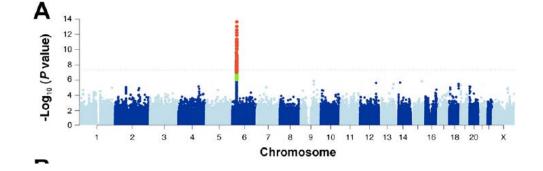
Elizabeth J. Phillips¹, Chonlaphat Sukasem^{2,3}, Michelle Whirl-Carrillo⁴, Daniel J. Müller^{5,6}, Henry M. Dunnenberger⁷, Wasun Chantratita^{8,9}, Barry Goldspiel¹⁰, Yuan-Tsong Chen^{11,12}, Bruce C. Carleton¹³, Alfred L. George Jr.¹⁴, Taisei Mushiroda¹⁵, Teri Klein⁴, Roseann S. Gammal^{16,17} and Munir Pirmohamed¹⁸ doi:10.1002/cpt.1004



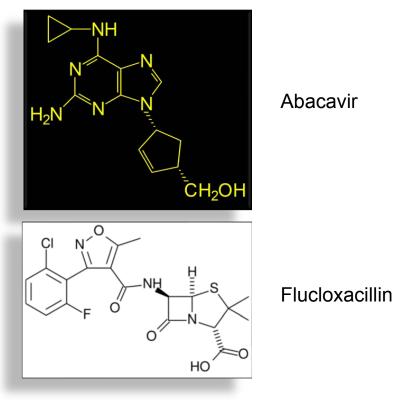
Cross-Reactivity among Beta-Lactams

Curr Allergy Asthma Rep (2016) 16: 24 DOI 10.1007/s11882-016-0594-9


Antonino Romano^{1,2} · Francesco Gaeta¹ · Maria Francisca Arribas Poves³ · Rocco Luigi Valluzzi¹

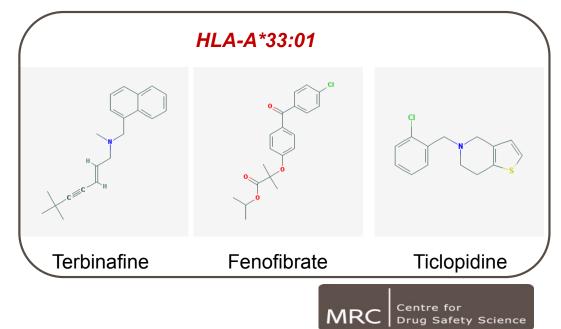


- Cross-reactivity is related to structural similarities among their chain determinants; e.g. between penicillin and cephalosporins (30%)
- Penicillins and carbapenem/aztreonam <1%
- Cross reactivity to recognition of the beta-lactam ring affecting all beta-lactams – is EXCEPTIONAL


CO-AMOXICLAV HEPATITIS HLA-DRB1*15:01-DQB1*06:02-HLA-A*02:01

HLA Allele Associations

HLA-B*57:01

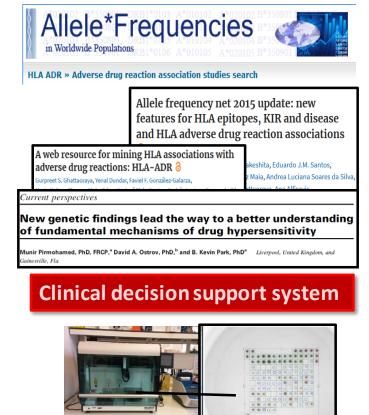

THE WOLFSON CENTRE FOR

PERSONALISED MEDICINE

Association of Liver Injury From Specific Drugs, or Groups of Drugs, With Polymorphisms in HLA and Other Genes in a Genome-Wide Association Study

Paola Nicoletti,^{1,*} Guruprasad P. Aithal,^{2,*} Einar S. Bjornsson,³ Raul J. Andrade,⁴ Ashley Sawle,¹ Marco Arrese,⁵ Huiman X. Barnhart,⁶ Emmanuelle Bondon-Guitton,⁷ Paul H. Hayashi,⁸ Fernando Bessone,⁹ Alfonso Carvajal,¹⁰ Ingolf Cascorbi,¹¹ Elizabeth T. Cirulli,⁶ Naga Chalasani,¹² Anita Conforti,¹³ Sally A. Coulthard,¹⁴ Mark J. Daly,¹⁵ Christopher P. Day,¹⁴ John F. Dillon,¹⁶ Robert J. Fontana,¹⁷ Jane I. Grove,² Pär Hallberg,¹⁸ Nelia Hernández,¹⁹ Luisa Ibáñez,²⁰ Gerd A. Kullak-Ublick,²¹ Tarja Laitinen,²² Dominique Larrey,²³ M. Isabel Lucena,⁴ Anke H. Maitland-van der Zee,²⁴ Jennifer H. Martin,²⁵ Mariam Molokhia,²⁶ Munir Pirmohamed,²⁷ Elizabeth E. Powell,²⁸ Shengying Qin,²⁹ Jose Serrano,³⁰ Camilla Stephens,⁴ Andrew Stolz,³¹ Mia Wadelius,¹⁸ Paul B. Watkins,³² Aris Floratos,¹ Yufeng Shen,¹ Matthew R. Nelson,³³ Thomas J. Urban,^{34,§} and Ann K. Daly^{14,§} ; on behalf of International Drug-Induced Liver Injury Consortium, Drug-Induced Liver Injury Network Investigators, and International Serious Adverse Events Consortium

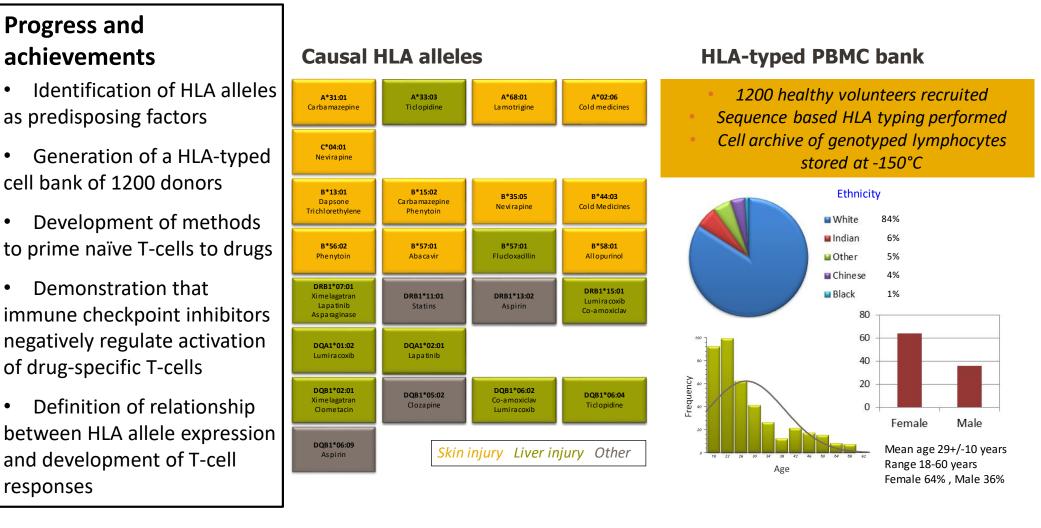
۲



Development of a stepwise screening approach to assess the intrinsic immunogenicity of drugs

Progress and achievements

- Identification of HLA alleles as predisposing factors
- Generation of a HLA-typed cell bank of 1200 donors
- Development of methods to prime naïve T-cells to drugs
- Demonstration that immune checkpoint inhibitors negatively regulate activation of drug-specific T-cells
- Definition of relationship between HLA allele expression and development of T-cell responses



HISTO SPOT

.......

Development of a stepwise screening approach to assess the intrinsic immunogenicity of drugs

Development of a stepwise screening approach to assess the intrinsic immunogenicity of drugs

Progress and achievements

- Identification of HLA alleles as predisposing factors
- Generation of a HLA-typed cell bank of 1200 donors
- Development of methods to prime naïve T-cells to drugs
- Demonstration that immune checkpoint inhibitors negatively regulate activation of drug-specific T-cells
- Definition of relationship between HLA allele expression and development of T-cell responses

	HLA association	Patient T-cells	Volunteer T-cells	HLA restriction	Phenotype	Cytotoxicity
Abacavir hypersensitivity	HLA-B*5701	Yes	Yes	class I	CD8 only	yes
Dapsone Sulfamethoxazole Skin reactions	HLA-B*1301 none	Yes Yes	Yes Yes	? class II	CD4>CD8 CD4>CD8	? yes
Carbamazepine Skin reactions	HLA-B*1502 HLA-A*3101	Yes	Yes	class I	CD8 >CD4	yes
Allopurinol Skin reactions	HLA-B*5801	Yes	Yes	class I	CD8 >CD4	yes
Flucloxacillin DILI	HLA-B*5701	Yes	Yes	class I	CD8 >CD4	yes
Amoxicillin/ clavulanic acid DILI	HLA-A*0201 HLA-DRB1*1501	Yes	Yes	class II	CD4>CD8	yes
Ticlopidine DILI	HLA-DRB1*3303	No	Yes	class I	CD8>CD4	yes
Ximelagatran Lapatinib DILI	HLA-DRB1*0701 HLA-BQA1*0201	Unknown Unknown	No No	? ?	? ?	? ?

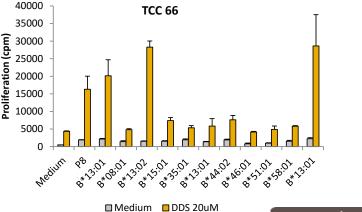
Clinical Syndromes

Detection of T-cells

Associations of Serious Adverse Drug Reactions with HLA Alleles

Prospective studies have shown that HLA genotyping can reduce the incidence of serious ADRs with

- Abacavir (*HLA-B*57:01*)
- Carbamazepine (HLA-B*15:02 and HLA-A*31:01)
- Allopurinol (*HLA-B*58:01*)
- Dapsone (*HLA-B*13:01*)


The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

HLA-B*13:01 and the Dapsone Hypersensitivity Syndrome

F.-R. Zhang, H. Liu, A. Irwanto, X.-A. Fu, Y. Li, G.-Q. Yu, Y.-X. Yu, M.-F. Chen,
H.-Q. Low, J.-H. Li, F.-F. Bao, J.-N. Foo, J.-X. Bei, X.-M. Jia, J. Liu, H. Liany, N. Wang,
G.-Y. Niu, Z.-Z. Wang, B.-Q. Shi, H.-Q. Tian, H.-X. Liu, S.-S. Ma, Y. Zhou, J.-B. You,
Q. Yang, C. Wang, T.-S. Chu, D.-C. Liu, X.-L. Yu, Y.-H. Sun, Y. Ning, Z.-H. Wei,
S.-L. Chen, X.-C. Chen, Z.-X. Zhang, Y.-X. Liu, S.L. Pulit, W.-B. Wu, Z.-Y. Zheng,
R.-D. Yang, H. Long, Z.-S. Liu, J.-Q. Wang, M. Li, L.-H. Zhang, H. Wang, L.-M. Wang,
P. Xiao, J.-L. Li, Z.-M. Huang, J.-X. Huang, Z. Li, Liu, L. Xiong, J. Yang,
X.-D. Wang, D.-B. Yu, X.-M. Lu, G.-Z. Zhou, L.-B. Yan, J.-P. Shen, G.-C. Zhang,
Y.-X. Zeng, P.I.W. de Bakker, S.-M. Chen, and J.-J. Liu

HLA Associations with Serious Adverse Drug Reactions

<mark>A*31:01</mark> Carbamazepine	A*33:03 Ticlopidine	A*68:01 Lamotrigine	A*02:06 Cold medicines	B*13:01 Dapsone Trichlorethylene	B*15:02 Carbamazepine Phenytoin
B*35:05 Nevirapine	B*44:03 Cold Medicines	B*56:02 Phenytoin	B*57:01 Abacavir Flucloxacillin	B*58:01 Allopurinol	C*04:01 Nevirapine
C*08:(01) Nevirapine	DRB1*07:01 Ximelagatran Lapatinib Asparaginase	DRB1*11:01 Statins	DRB1*13:02 Aspirin	DRB1*15:01 Lumiracoxib Co-amoxiclav	DQA1*01:02 Lumiracoxib
DQA1*02:01 Lapatinib	DQB1*02:01 Ximelagatran Clometacin	DQB1*05:02 Clozapine	DQB1*06:02 Co-amoxiclav Lumiracoxib	DQB1*06:04 Ticlopidine	DQB1*06:09 Aspirin

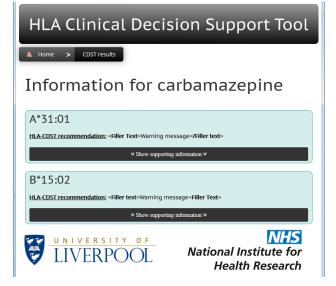
HLA Panel Analytic Validation

Platform was able to call risk alleles with 100% accuracy at all the loci (n=187 healthy volunteers) using sequence based typing as the standard

Number of Risk Alleles per sample	Number of Samples	% of samples	85% have at
0	28	15.0	least 1 risk
1	39	20.9	allele
2	14	7.5	
3	46	24.6	Use At time needed
4	34	18.2	Store data on EHR
5	11	5.9	Pre-emptive
6	6	3.2	genotype48 HOUR TURN-
7	8	4.3	AROUND TIME
8	1	0.5	
LIVERPOC	O FTHE WOLFSON CENTRE FOR PERSONALISED MEDICINE	unded by NI	HR

Clinical Decision Support

Please select your drug and/or alleles of interest

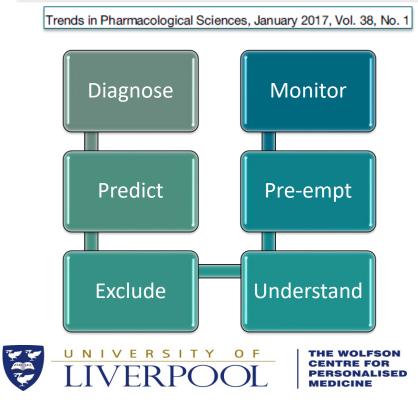


Database last updated: 07 March 2017

THE WOLFSON CENTRE FOR PERSONALISED MEDICINE

NHS

National Institute for Health Research



Special Issue: Precision Medicine

Review

Genomics of Adverse Drug Reactions

Ana Alfirevic¹ and Munir Pirmohamed^{1,*}

Genomic testing can be used for more than prediction

Example of the Use for Diagnosis

- 66 year old man
- Presents with Jaundice
- Patient on flucloxacillin for cellulitis
- Ultrasound gallstones
- What is the diagnosis?
 - HLA-B*57:01 strong association with flucloxacillin hepatitis
 - 100% negative predictive value
 - Patient was negative for HLA-B*57:01
 - Treatment cholecystectomy
 - Not allergic to flucloxacillin GP informed. Important as patient with history of recurrent cellulitis.

Genetic and Environmental factors

- We do not understand the whole pathway of drug hypersensitivity
- All of us can form drug antigens and can have susceptible HLA alleles, but still not get the hypersensitivity reaction
- Other factors including loss of tolerance may be important
- Important to understand this to develop better diagnostic and predictive tests and improve drug development

Acknowledgements

The University of Liverpool

- B Kevin Park
- Ana Alfirevic
- Anita Hanson
- Andrea Jorgensen
- Neil French
- Vincent Yip
- Panos Deloukas
- Stephane Bourgeois
- Ann Daly (and iDILIC)
- Paola Nicoletti (ITCH)
- Matt Nelson, Arthur Holden (iSAEC)

- INTERNATIONAL SERIOUS ADVERSE EVENT CONSORTIUM (ITCH, iDILIC)
- Funders: Dept of Health (NHS Chair of Pharmacogenetics)
- MRC, WT, DH, NIHR, EU-FP7

Thanks also to MC Diagnostics (HLA gene panel)

