

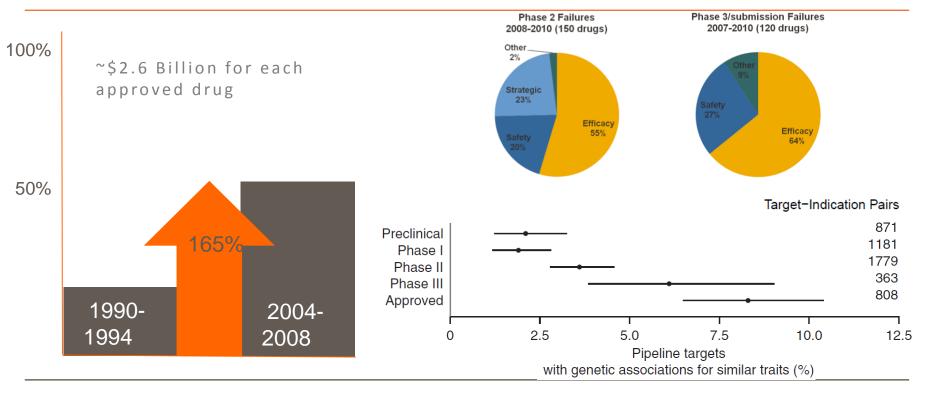
Using GWAS and Sequence Data to Identify and Validate Drug Targets October 15, 2018

Matt Nelson Head, Genetics

## The drug discovery dilemma



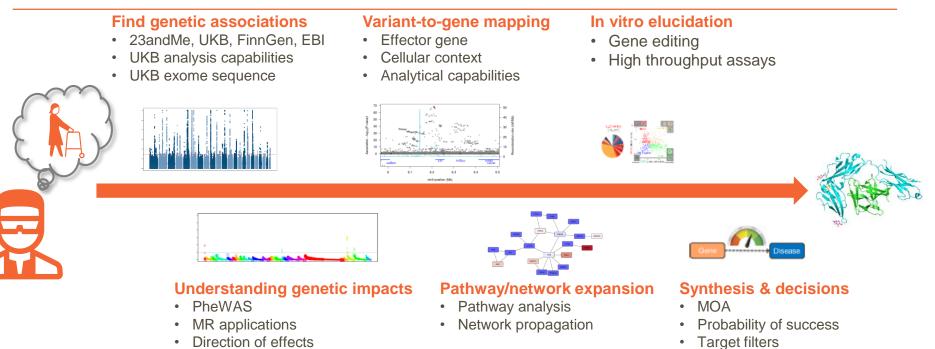
Drugs with human genetic evidence >2x more likely to be successful



DiMasi JA et al. (2016) J Health Econ 47:20-33; Nelson et al. (2015) Nat Genet 47:846-60

#### From genetic association to target selection





Direction of effects •

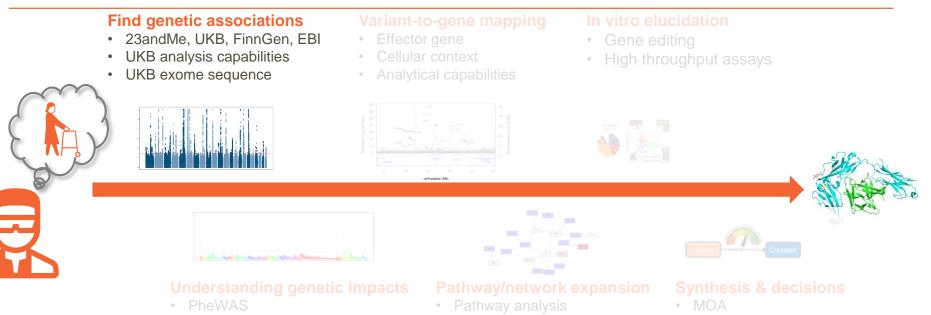
3

•

Portfolio view

#### From genetic association to target selection



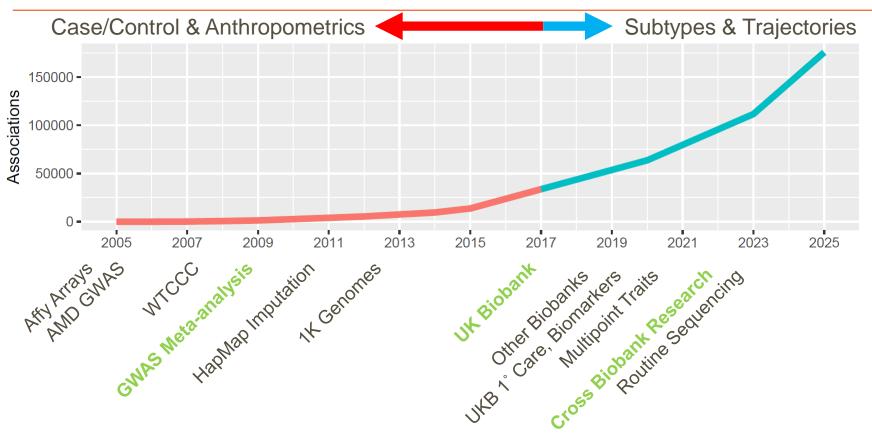


- MR applications
- Direction of effects

## The discovery of genetic contributions to complex traits is just getting started

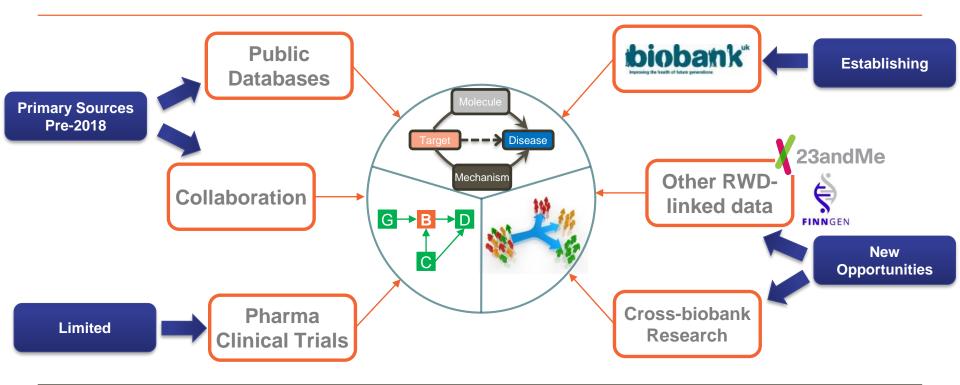


5



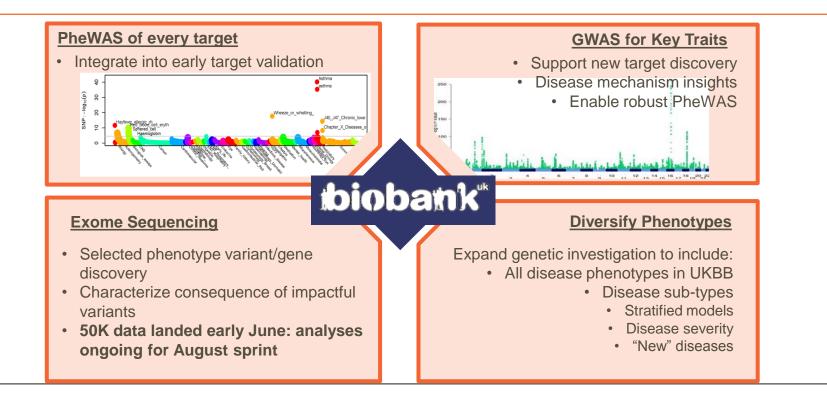
#### **Sources of genetic evidence**





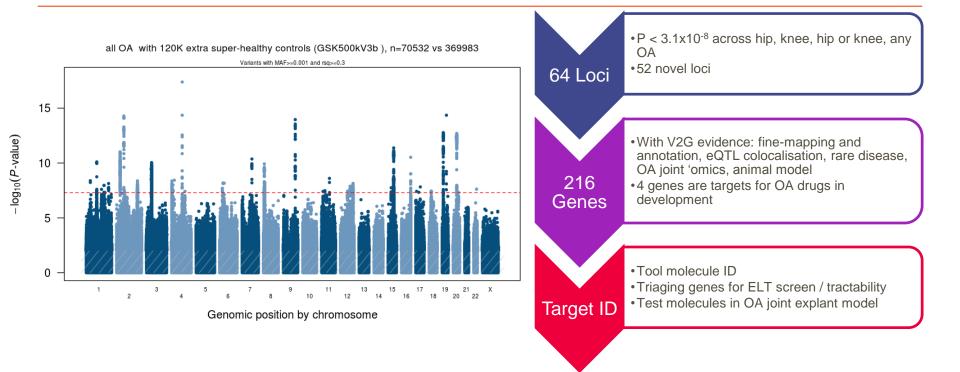
### UK Biobank is changing the way we do genetic research





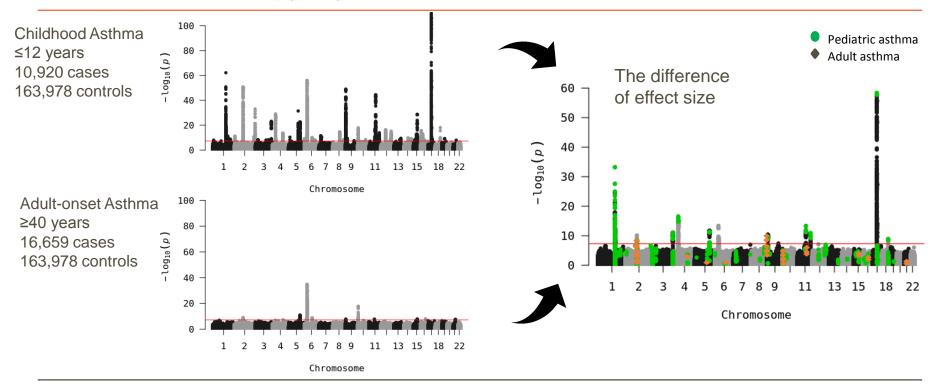
### GWAS analysis of osteoarthritis in biobank





Linda McCarthy et al., Program #2307W; Poster session on Wednesday 2-3 PM Ioanna Tachmazidou et al., Session #27, Wednesday 4:15pm-5:45pm

### GWAS and pathway analyses in childhood and adultonset asthma in **biobank**\*

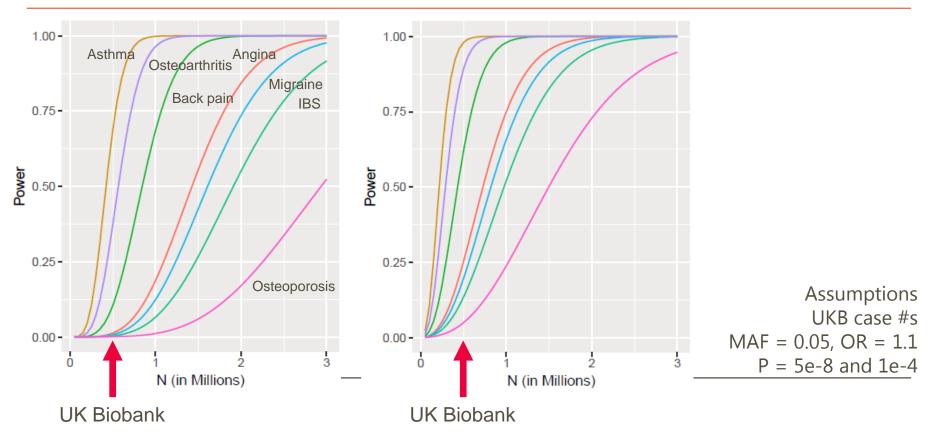


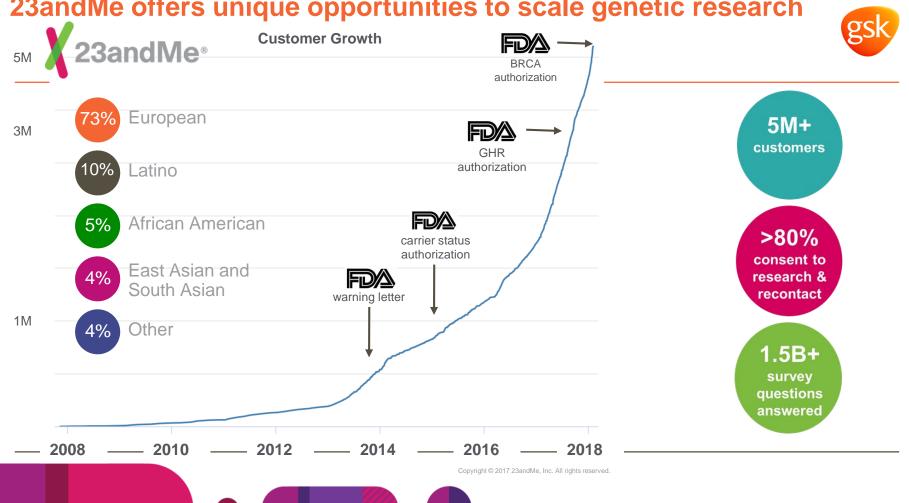
Kijoung Song et al., Session #56, Thursday at 11 AM

## **Broad discovery power in population samples requires** very large numbers GWAS Significance Threshold



PheWAS Significance Threshold





#### 23andMe offers unique opportunities to scale genetic research

#### To genotype or sequence...





A. A. A. G. C. A.

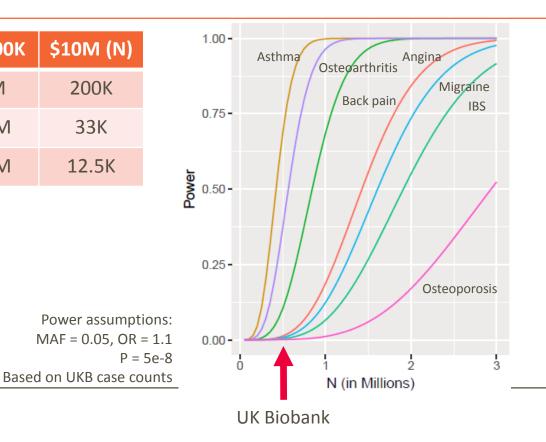
CGAGATCTCCCGACCTCATGG CCAAGCTCTTTTCTTCTGTGC

#### Impact of cost on scale



| Approach        | Cost* | N = 100K | \$10M (N) |
|-----------------|-------|----------|-----------|
| Genotype array  | \$50  | \$5M     | 200K      |
| Exome sequence  | \$300 | \$30M    | 33K       |
| Genome sequence | \$800 | \$80M    | 12.5K     |

\*Informal, ballpark estimates for high volume (N >50K) initiatives

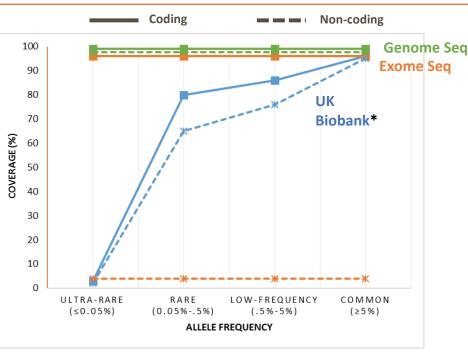


#### **Coverage trade-offs**

Sequence (extrapolated from ExAC) versus UK Biobank genotypes

- Imputation from a large reference substantially improves array genotype value
  - Enrichment of low frequency coding variants improves coverage
- Whole genome sequence generally outperforms exome even within captured regions
- The contribution of rare non-coding variation to complex traits is largely unexplored
  - Need to learn how to identify rLoF variants (regulatory loss of function) to fully exploit WGS







### **Capture of pLoF variants**

Sequence (extrapolated from ExAC) versus UK Biobank genotypes

0 -



For testing effect of pLoF variants, sequencing catches up with arrays 80% Power at around a 1:2 ratio 6000 -Capture of coding *indels* directly or Source via imputation in UKB is ~40% less 450K Arrays ٨ 4000 -Number of Genes efficient than SNPs of the same 50K Exomes 200K Exomes frequency 450K Exomes 2000 -

1.5

2.5

Odds Ratio

5.0

## Sequencing in consanguineous populations identifies disproportionately more knock-outs



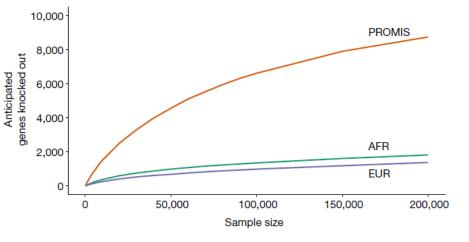
### LETTER

doi:10.1038/nature22034

## Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity

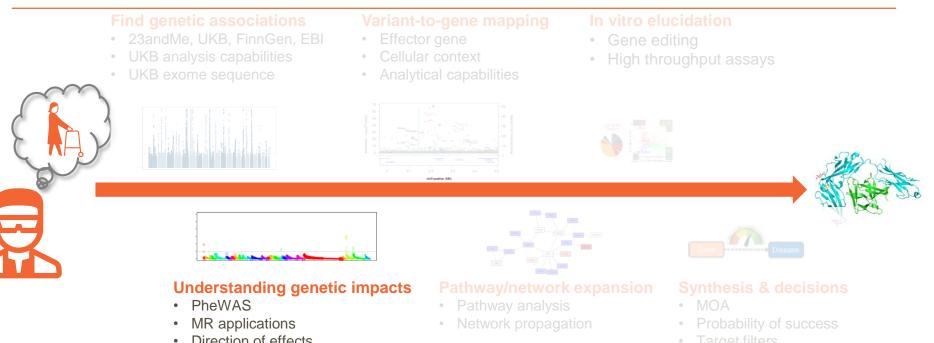
Danish Saleheen<sup>1,2</sup>\*, Pradeep Natarajan<sup>3,4</sup>\*, Irina M. Armean<sup>4,5</sup>, Wei Zhao<sup>1</sup>, Asif Rasheed<sup>2</sup>, Sumeet A. Khetarpal<sup>6</sup>, Hong Konrad J. Karczewski<sup>4,5</sup>, Anne H. O'Donnell–Luria<sup>4,5,8</sup>, Kaitlin E. Samocha<sup>4,5</sup>, Benjamin Weisburd<sup>4,5</sup>, Namrata Gupta<sup>4</sup> Mozzam Zaid<sup>1</sup>, Maria Samuel<sup>2</sup>, Atli Imran<sup>2</sup>, Shahid Abbas<sup>9</sup>, Fasial Majead<sup>2</sup>, Madina Ishaq<sup>2</sup>, Saba Akhtar<sup>2</sup>, Kevin Trind Megan Mucksavage<sup>6</sup>, Nadeem Qamar<sup>10</sup>, Khan Shah Zaman<sup>10</sup>, Zia Yaqoob<sup>10</sup>, Tahir Saghir<sup>10</sup>, Syed Nadeem Hasan Rizvi<sup>1</sup> Anis Memon<sup>10</sup>, Nadeem Hayyat Mallick<sup>11</sup>, Mohammad Ishaq<sup>12</sup>, Syed Zahed Rasheed<sup>12</sup>, Fazal–ur–Rehman Memon<sup>13</sup>, Khalid Mahmood<sup>14</sup>, Naveeduddin Ahmed<sup>15</sup>, Ron Dol<sup>6,17</sup>, Ronald M. Krauss<sup>18</sup>, Daniel G. MacArthur<sup>4,5</sup>, Stacey Gabriel<sup>4</sup>, Eric S. Lander<sup>4</sup>, Mark J. Daly<sup>4,5</sup>, Philippe Frossard<sup>2</sup>8, John Danesh<sup>19,20</sup>8, Daniel J. Rader<sup>6,21</sup>8 & Sekar Kathiresan<sup>3,4</sup>8

Offspring of consanguineous unions are more likely to be homozygous for loss-offunction (LoF) mutations than nonconsanguineous populations (i.e. human knock-outs) Estimated number of genes with knock-outs for PROMIS versus LRM populations



### From genetic association to target selection





Direction of effects

## Access to individual level data allow detailed follow-up analyses

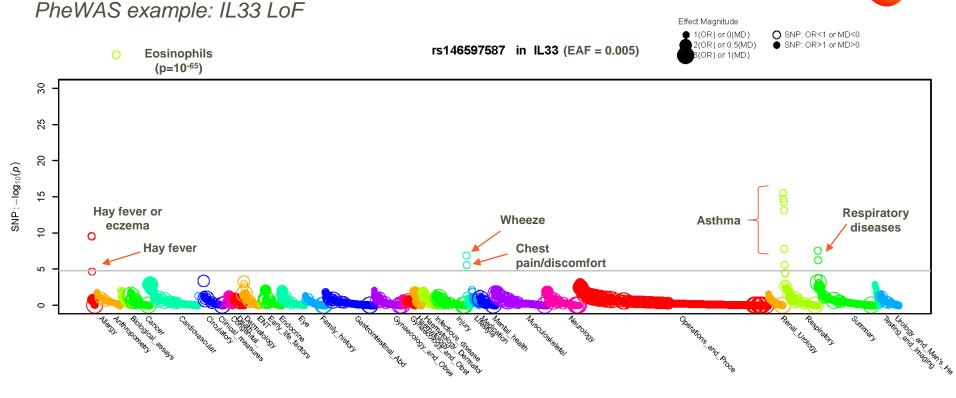


#### IL33 LoF disease association

| Outcome                 | Case  | Control |                                  |     | OR (95% CI)       | P-value  |
|-------------------------|-------|---------|----------------------------------|-----|-------------------|----------|
| Asthma (all)            | 43860 | 335476  | <b></b>                          |     | 0.59 (0.52, 0.67) | 2.22e-16 |
| Asthma (Lo Eosinophils) | 14969 | 168786  | <b>—</b>                         |     | 0.68 (0.56, 0.81) | 3.26e-05 |
| Asthma (Hi Eosinophils) | 27502 | 156176  | <b>—</b>                         |     | 0.61 (0.51, 0.73) | 1.15e-07 |
| Asthma (child)          | 11885 | 335476  | <b></b>                          |     | 0.48 (0.37, 0.62) | 4.79e-08 |
| Asthma (adult)          | 31975 | 335476  | <b>—</b>                         |     | 0.63 (0.54, 0.72) | 1.82e-10 |
| Asthma case severe      | 1917  | 42176   |                                  |     | 0.88 (0.47, 1.66) | 0.70     |
| COPD (all)              | 20657 | 172708  | <b></b>                          |     | 0.77 (0.65, 0.92) | 3.10e-03 |
| Hay fever               | 21651 | 357685  | <b>—</b>                         |     | 0.71 (0.60, 0.83) | 4.02e-05 |
| Nasal polyps            | 4021  | 375315  | <b></b>                          |     | 0.42 (0.26, 0.69) | 5.31e-04 |
| Death                   | 10950 | 368386  |                                  |     | 1.01 (0.83, 1.23) | 0.91     |
|                         |       | 0.2     | OR per LoF-allele <sup>0.8</sup> | 1.2 | 1.8               |          |

#### **SNVs as proxies for target perturbation**

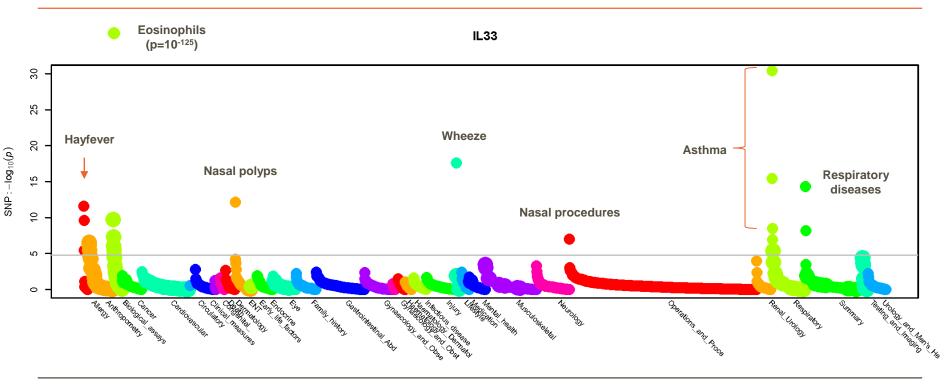




## When we don't have impactful SNVs, predicted expression as an approach to instrument genes

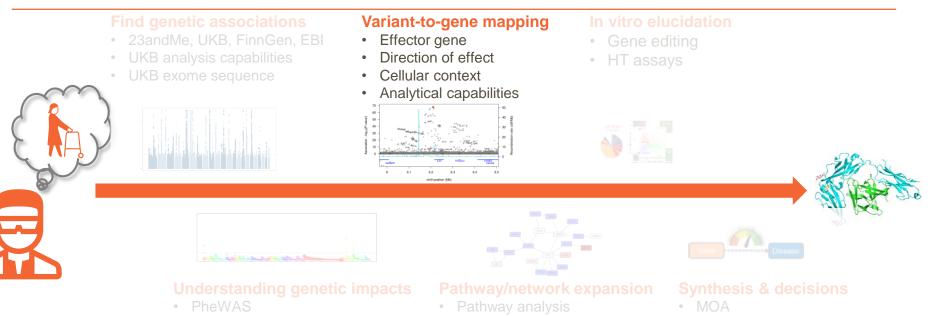
gsk

We can "instrument" ~17000 genes in 1 tissue, ~7000 in > 10 tissues



### From genetic association to target selection





- Direction of effects
- MR applications

## Can we use the growing set of functional genomic data types to inform V2G mapping?



#### **Functional annotation of variants**

#### **Protein-coding**

LoF/GoF mutations SIFT/PolyPhen/PROVEAN/etc...

#### **Open chromatin**

DNasel hypersensitivity (DHS) ATAC-seq

#### **Regulatory function**

Chromatin accessibility (DHS) eRNA expression (FANTOM5) Histone modifications (ChIP-seq) DNA methylation Chromatin state prediction (ChromHMM/IDEAS)

#### Variant-to-gene mapping

#### **Protein-coding**

Genetics-based methods eQTL/pQTL

#### **Correlation-based methods**

Correlated epigenetics (i.e. DHSs) FANTOM5 enhancers-to-genes

#### **DNA-looping**

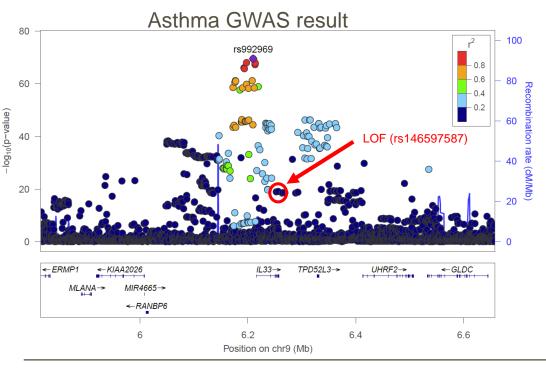
Chromosome conformation (i.e. \*C or HiC) Promoter-capture HiC (enrich for promoters) HiChIP/ChIA-PET (enrich for functional marks)

Opportunity: A large amount of this data is being generated Challenges: Different methods tell you different things about transcriptional regulation Different methods have different levels of noise and sensitivity/specificity Considerable biases in the available tissues/cell-types (often an immune bias)

For a given locus, the weight of evidence for each gene is the combination of these data

### Teasing apart associations and identifying effector genes

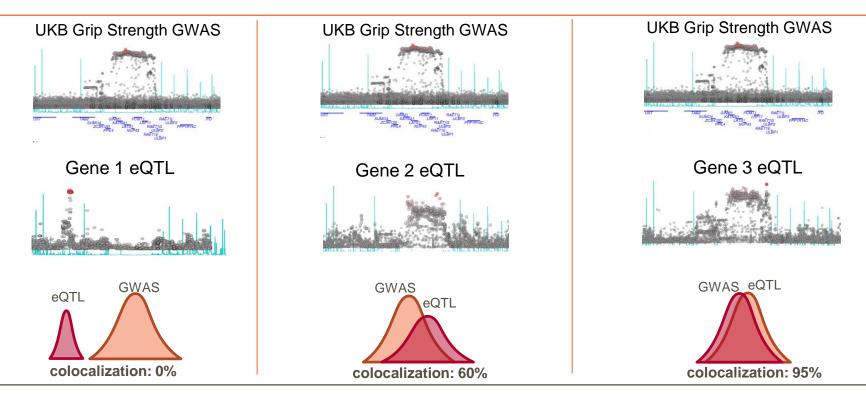




- Conditional analyses implicate
  4 putatively causal SNVs in
  the region
  - Including the LoF
- Individual level data allow us to perform conditional analyses and fine-mapping even for rare variants

# Identify disease causal genes through inference: colocalization testing

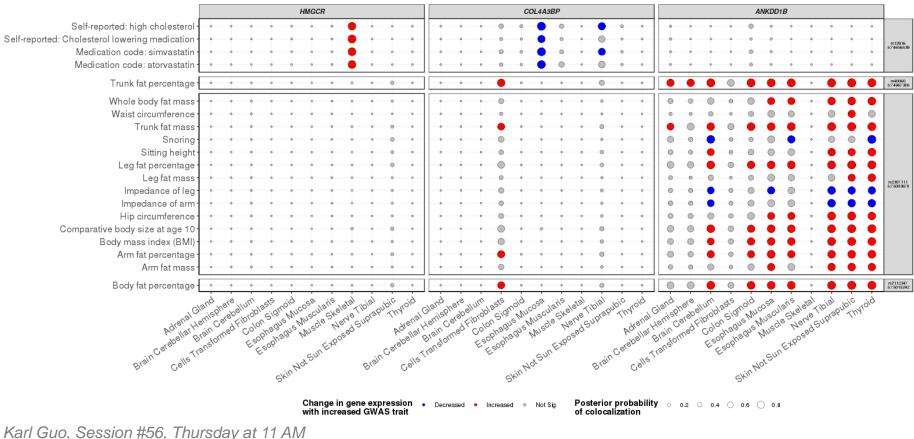




Giambartolomei et al., Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics. PLoS Genetics, 2014

Dawn Waterworth, Session #32, Wednesday at 9:45 AM

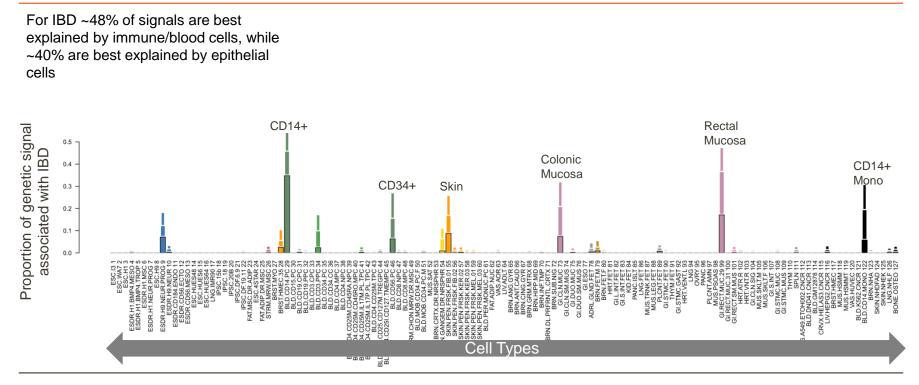
### Comprehensive colocalization can differentiate causal genes



Karl Guo, Session #56, Thursday at 11 AM Karsten Sieber, Poster #3314, Friday at 3 PM

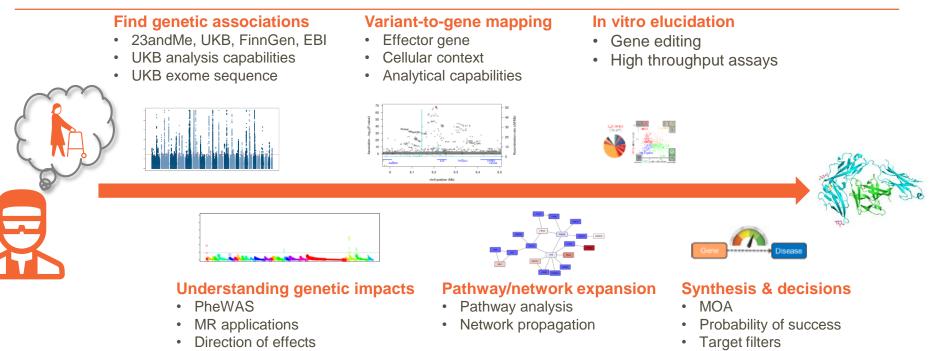
## Identifying disease relevant tissues by combining GWAS with chromatin states across cell types: An IBD example





#### From genetic association to target selection





Portfolio view

#### **Special thanks**





**Kijoung Song** 



Josh Hoffman



loanna Tachmazidou



Ashutosh Pandey



Giovanni Dall'Olio



Karl Guo



John Whittaker



**Toby Johnson** 



Meg Ehm



Dawn Waterworth



Laura Yerges-Armstrong





Linda McCarthy





