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Genetic risk and a primary role for cell-mediated
immune mechanisms in multiple sclerosis
The International Multiple Sclerosis Genetics Consortium* & the Wellcome Trust Case Control Consortium 2*

Multiple sclerosis is a common disease of the central nervous
system in which the interplay between inflammatory and neuro-
degenerative processes typically results in intermittent neuro-
logical disturbance followed by progressive accumulation of
disability1. Epidemiological studies have shown that genetic factors
are primarily responsible for the substantially increased frequency
of the disease seen in the relatives of affected individuals2,3, and
systematic attempts to identify linkage in multiplex families have
confirmed that variation within the major histocompatibility
complex (MHC) exerts the greatest individual effect on risk4.
Modestly powered genome-wide association studies (GWAS)5–10

have enabled more than 20 additional risk loci to be identified
and have shown that multiple variants exerting modest individual
effects have a key role in disease susceptibility11. Most of the genetic
architecture underlying susceptibility to the disease remains to be
defined and is anticipated to require the analysis of sample sizes
that are beyond the numbers currently available to individual
research groups. In a collaborative GWAS involving 9,772 cases
of European descent collected by 23 research groups working in 15
different countries, we have replicated almost all of the previously
suggested associations and identified at least a further 29 novel
susceptibility loci. Within the MHC we have refined the identity
of the HLA-DRB1 risk alleles and confirmed that variation in the
HLA-A gene underlies the independent protective effect attri-
butable to the class I region. Immunologically relevant genes are
significantly overrepresented among those mapping close to the
identified loci and particularly implicate T-helper-cell differenti-
ation in the pathogenesis of multiple sclerosis.
We performed a large GWAS as part of the Wellcome Trust Case

Control Consortium 2 (WTCCC2) project. Cases were recruited
through the International Multiple Sclerosis Genetics Consortium
(IMSGC) and compared with the WTCCC2 common control set12,13

supplemented by data from the control arms of existing GWAS. We
introduced a number of novel quality control methods for processing
these data sets (see Supplementary Information), which ultimately
provided reliable information from 9,772 cases and 17,376 controls
(Fig. 1a). After single nucleotide polymorphism (SNP)-based quality
controls, data from 465,434 autosomal SNPs, common to all internally
and externally generated data sets, were available for analysis.
The multi-population nature of our study (Fig. 1a, b) afforded an

opportunity to assess various published approaches for controlling the
potential confounding effects of population structure, several of which
(in the event) proved unhelpful (see Supplementary Information).
Although not common in primary GWAS undertaken to date, the
challenge of combining data across populations, in contexts where
not all case samples have controls available from the same population
(thus precluding standard meta-analytical techniques), may become
more routine as study sizes increase.
We attempted analyses of the non-United Kingdom (UK) data with

the now widespread technique of using principal components as
covariates to correct for structure. However, even use of all seven top
principal components that captured genome-wide effects in our data

resulted in an unacceptably high genomic inflation: for example, the
genomic control factor14 (l) was l5 1.2.We tried to reduce the genomic
inflationbydiscarding the case samples that seemed leastwellmatched to
control sets. Removal of half the available cases in this fashion only
reduced l to 1.1. In another approach to handling structure, statistical
clustering algorithmswere successful in identifying subgroupsof thedata
within which cases and controls seemed well matched for ancestry (see
Supplementary Fig. 17). However, tests within these subgroups com-
bined via fixed-effects meta-analysis also yielded unacceptably high
genomic inflation (l.1.4) in an analysis with sevenmatched subgroups
of cases and controls. Lastly, we applied a novel variance components
method (similar to one described previously15), separately to the UK and
non-UK data sets, which explicitly accounts for correlations among the
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Figure 1 | Distribution of cases and controls. a, b, All cases and controls were
drawn from populations with European ancestry; cases from 15 countries and
controls from8. a, Numbers of case (red) and control (black) samples fromeach
country. b, The projection of samples onto the first two principal components
of genetic variation, with cases shown on the left and controls on the right. The
axes are orientated to approximate the geography, and samples are colour
coded as indicated in the legend. NZ, New Zealand. We genotyped the cases
(9,772) and some Swedish controls (527) using the Illumina Human 660-Quad
platform, and the UK controls (5,175, the WTCCC2 common control set12,13)
using the Illumina 1.2M platform. All other controls were genotyped externally
using various Illumina genotyping systems (see Supplementary Information).
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phenotypes of individuals resulting from relatedness, allowing us to deal
successfully with all sources of structure in our samples (see Sup-
plementary Information for details of the linear mixed model we used).
For example, the genomic inflation was reduced to l5 0.995 in the UK
and 1.016 in the non-UK data (see also Supplementary Information).
After fixed-effectsmeta-analysis of the results from theUK and non-UK
data sets, the inflation factor was l5 1.045. We adopted this approach
for all subsequent non-MHC association analyses.
Outside the MHC we identified 95 distinct regions having at least

one SNP associated with multiple sclerosis at PGWAS, 13 1024.5; in
six of these 95 regions conditional analysis revealed an additional SNP
showing association to the same locus (one locus containing two such
SNPs). In total we took all 102 SNPs forward to replication, which we
performed using data from previously reported multiple sclerosis
GWAS8,9 and the iControl database (excluding any WTCCC controls
previously used in these studies). In total, the replication analysis
included data from 4,218 cases and 7,296 controls. These were con-
sidered in six independent strata after which results were combined
through a fixed-effectsmeta-analysis. For 98 of the 102 SNPs, the same

allelewas overrepresented in cases compared to controls. Twenty three
of the 26 previously known or strongly suggested multiple-sclerosis-
associated loci were replicated in our primary GWAS with
PGWAS, 13 1023. Our GWAS and replication also revealed another
29 novel associated regions (defined as having PGWAS, 13 1024.5,
one-sided Preplication, 0.05 and Pcombined, 53 1028), and a further 5
regions with strong evidence for association (with PGWAS, 13 1024.5,
one-sided Preplication, 0.05 and Pcombined, 53 1027). In one previ-
ously reported locus and twonovel loci, additional SNPswere identified
as being conditionally important in explaining risk. Just over one third
of the identified loci overlap with regions already confirmed as asso-
ciated with at least one other autoimmune disease (according to the
GWAS catalogue, http://www.genome.gov/gwastudies/). Results for
both the previously established and novel loci are shown in Fig. 2 and
Supplementary Tables 1–3; and details of all 102 SNPs taken to replica-
tion are available in Supplementary Data.
To assess objectively the collective evidence across the associated

regions for particular classes of genes, we performed statistical analyses
to look for enrichmentof geneswith similar function.We first identified
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Figure 2 | Regions of the genome
showing association to multiple
sclerosis. Columns from left to right:
first, evidence for association from the
linear mixed model analysis of the
discovery data (thresholded at –
log10P value5 12). Non-MHC
regions containing associated SNPs
are shown in red and are labelled with
the rs number (bold for newly
identified loci, black for strong
evidence, grey for previously
reported) and risk allele of the most
significant SNP. Asterisk indicates
that the locus contains a secondary
SNP signal. Second, OR and 95%
confidence intervals estimated from
themeta-analysis of the discovery and
replication data (1 indicates
estimates for previously known loci
from discovery data only). Third, risk
allele frequency estimates in each of
the control populations used in the
study (each is shown as a vertical bar
on a scale from 0 to 1 going left to
right). For each region of association
thenumberofgenes is reported (fifth),
and where non-zero a candidate gene
is given (fourth). Black dots indicate
that the candidate gene is physically
the nearest gene (sixth) included in
the ‘immune systemprocess’GO term
(seventh). Eight, when the most-
significant SNP tags an SNPpredicted
to have an impact on the function of
the candidate gene this is indicated.
Where such an SNP exists, the gene
involved is selected as the candidate
gene; otherwise the nearest gene is
selected unless there are strong
biological reasons for a different
choice. The final column indicates
SNPs that are correlated (r2 . 0.1)
with SNPs reported to be associated
with other autoimmune (AI) diseases.
CeD, coeliac disease; CrD,Crohn’s
disease; PS, psoriasis; RA, rheumatoid
arthritis; T1D, type 1 diabetes; UC,
ulcerative colitis. An interactive
version of the figure is available at
http://www.well.ox.ac.uk/wtccc2/ms.
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the nearest gene to the lead SNP in each of the (52) regions of asso-
ciation and used the Gene Ontology (GO) database16 to define sets of
functionally related genes (GO terms). We then tested whether the set
of nearest genes was enriched for particular GO terms using Fisher’s
exact test. The GO terms having the most significant enrichment
include genes linked to lymphocyte function (P5 3.23 10211, odds
ratio (OR)5 35.96) and in particular those with a role in T-cell activa-
tion and proliferation (P5 1.853 1029, OR5 40.85). These are rep-
resentative of a larger group associatedwith various components of the
GO ‘immune system process’ (P5 8.63 10211, OR5 9.12). A similar
analysis based on all genes in or near association regions showed
similar enrichment, as did independent analyses based on nearest gene
or all genes in our next tier of signals, the 42 regions taken to replication
but not meeting the thresholds above for association (see Supplemen-
taryData). AlthoughGO immune system genes only account for 7%of
human genes, in 30% of our association regions the nearest gene to the
lead SNP is an immune system gene. As an illustration, Fig. 3 shows a
schematic of genes involved in the T-helper-cell differentiation path-
way; a notable number show strong evidence for association with
multiple sclerosis, particularly those acting as cell surface receptors.
We infer from this pathway analysis of our GWAS signals that specific
classes of immune system genes are especially important in the patho-
genesis of multiple sclerosis.
Our screen not only implicates a multitude of genes coding for

cytokine pathway (CXCR5, IL2RA, IL7R, IL7, IL12RB1, IL22RA2,
IL12A, IL12B, IRF8,TNFRSF1A,TNFRSF14,TNFSF14), co-stimulatory
(CD37, CD40, CD58, CD80, CD86, CLECL1) and signal transduction
(CBLB, GPR65, MALT1, RGS1, STAT3, TAGAP, TYK2) molecules of
immunological relevance, but also relates to previously reported
environmental risk factors such as vitamin D9,17 (CYP27B1, CYP24A1)
and therapies for multiple sclerosis including natalizumab18 (VCAM1)
and daclizumab19 (IL2RA). There is a relative absence of genes relevant
to potential pathways for neurodegeneration independent of inflam-
mation (GALC, KIF21B).
To refine our understanding of the MHC associations in multiple

sclerosis we imputed classical human leukocyte antigen (HLA) types at
six loci (A, B, C, DQA1, DQB1 and DRB1)20 and analysed these along-
side the SNPs (see Supplementary Information for validation; at alleles
responsible for the major signals described later, estimated specificity
was at least 0.99 and sensitivitywas at least 0.98, except forDRB1*13:03,
where it was 0.88). Primary discovery was focused on the UK cohort
with candidate signals being validated through support from addi-
tional case–control cohorts. Because of the extensive linkage disequi-
librium within the MHC, we identified associated alleles in a stepwise

manner, selecting the most strongly associated to include in a general
model, in turn, if PUK, 1024 and Pcombined, 1029 (Supplementary
Information). At each stage we explored possible interactions and
departures from the simple model in which risk increases multiplica-
tively with each additional copy of the relevant allele (additive increase
on the log-odds scale) within the logistic risk framework.
Using this approach we found that DRB1*15:01 has the strongest

association with multiple sclerosis among all classical and SNP alleles,
with a consistent effect between cohorts (P, 13 102320; Fig. 4a). The
data are consistent with an additive effect on the log-odds scale for each
additional allele. Conditioning on DRB1*15:01, we confirmed the
presence of a protective class I allele and identified the signal as being
driven by HLA-A*02:01 (as previously suggested21), with a consistent
effect size across cohorts (P5 9.13 10223; Fig. 4a). Again, we found no
strong evidence for departure from additivity on the log-odds scale or
statistical interaction with DRB1*15:01. Conditioning on both
DRB1*15:01 and A*02:01 revealed additional risk associated with the
strongly linked alleles DRB1*03:01 andDQB1*02:01 (P5 3.63 10210;
Fig. 4a; note that we cannot separate these alleles but for simplicity
refer only to DRB1*03:01 later). Further conditioning identified an
additional DRB1 risk allele DRB1*13:03 (P5 1.33 10211; Fig. 4a).
Although no other classical alleles meet the above criteria, we did
observe several SNPsproviding independent signals, the strongest com-
ing from rs9277535_G (combined OR 1.28, P5 2.23 10222), an allele
known to be in linkage disequilibrium with DPB1*03:01 (r25 0.37)22.
Analysis of the MHC SNP data using a genealogical method

(GENECLUSTER)23 offers an alternative means of relating our results
to classical HLA alleles that provides additional insight into the under-
lying genetic architecture (see Supplementary Information). Figure 4b
showsgenealogical trees relating the classical alleles atDRB1 andHLA-A,
together with the estimated evolutionary position of the mutations pre-
dicted by GENECLUSTER, as most completely modelling the asso-
ciation. At HLA-DRB1, three mutations are predicted, each of which
implicates a clade of haplotypes carrying particular DRB1 alleles. All of
the DRB1 alleles we have shown to be independently associated are
included in these clades, each corresponding to a particular mutation.
In addition, the analysis also explains why those haplotypes carrying the
*08:01 allele havepreviously been shown to increase risk24,25 as they carry
the same mutation as those bearing *13:03. At HLA-A, the predicted
protective mutation is also concordant with our regression analysis of
classical alleles in implicating *02:01 but, in addition, predicts that
*68:01, *02:05 and *02:06 carry the same protective allele. All of these
secondary predictions (increased risk fromDRB1*08:01 and protection
fromHLA-A*68:01, *02:05 and *02:06) are supported in our regression
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analysis of classical alleles but the power to detect them in the primary
analyses is limited because each allele occurs at very low frequency.
We found no evidence for genetic associations with clinical course,

severity of disease or month of birth, and no evidence of interaction
with gender or DRB1*15:01 in any part of the genome (see Sup-
plementary Information). However, analysis with respect to age at
onset replicated the previously suggested association with the
DRB1*15:01 allele26. Although no other part of the genome contained
individual SNPs showing strong evidence for association, risk alleles
determining susceptibility are collectivelymore closely associated with
age at onset than expected by chance, indicating that individual genetic
susceptibility is inversely correlated with age at onset.
Our GWAS—large for any complex trait having a prevalence of

1:1,000 and involving diverse populations of European descent—has
identified 29 novel susceptibility loci. Four mutations, one from class I
and three from class II, with effects modelled in a simple multiplicative
manner within and across loci are sufficient to account for most of the
risk attributable to the MHC (see Supplementary Information).
Although our data do not address the issue of which components
within the nervous system are initially damaged by the inflammatory
response, the overrepresentation of genes that influence T-cell
maturation provides independent and compelling evidence that the
critical disease mechanisms primarily involve immune dysregulation.
More generally, our study reinforces the view that theGWASdesign,

combined with very large experimental sample sizes and careful
statistical analysis, provides valuable insights into the genetic architec-
ture of common complex diseases. Here, this approach has identified
many associated genetic variants close to genes, which are both indi-
vidually interesting and collectively illuminate the roles of key bio-
logical pathways. It also provides indirect evidence that many more
common variants of small effect contribute to genetic susceptibility for
multiple sclerosis. Simple models, in which the previously known and
newly identified variants affect risk multiplicatively, both within and
across loci, explain a meaningful proportion (,20%, see Supplemen-
tary Information) of genetic risk for the disease. Important challenges
lie ahead in understanding overlap between the genetic basis for

susceptibility in the context of different autoimmune diseases, and in
uncovering the functional mechanisms underlying these associations.

METHODS SUMMARY
Details of case ascertainment, processing and genotyping, together with sample
and genotyping quality control are provided in Supplementary Information.
Statisticalmethods developed for testing the reliability of externally generated data
sets, detecting samples with non-European ancestry, correcting for structure,
classical HLA imputation and meta-analysis are also outlined in Supplementary
Information. Results for all scans and all reported loci are described in detail in
Supplementary Information.
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