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Advances in genotyping and sequencing technologies have revolutionized the genetics of complex

disease by locating rare and common variants that influence an individual’s risk for diseases, such

as diabetes, cancers, and psychiatric disorders. However, to capitalize on these data for prevention

and therapies requires the identification of causal alleles and a mechanistic understanding for how

these variants contribute to the disease. After discussing the strategies currently used to map

variants for complex diseases, this Primer explores how variants may be prioritized for follow-up

functional studies and the challenges and approaches for assessing the contributions of rare and

common variants to disease phenotypes.

Most common diseases are complex: many genetic and environ-

mental factors mediate the risk for developing the disease, and

each individual factor explains only a small proportion of popula-

tion risk (Cardon and Abecasis, 2003). Genome-wide genotyping

with high-throughput approaches has led to the identification of

>2,600 associated common risk alleles, with convincing associ-

ations in >350 different complex traits (most with modest effect

size of odds ratio <1.5) (Hindorff et al., 2009). More recently,

low-cost, high-throughput sequencing of exomes and whole

genomes is giving investigators access to the spectrum of rare

inherited variants and de novo mutations. Once an associated

allele is discovered, a critical step to characterizing pathogen-

esis is the definition of the causal allele, that is the functional

allele that influences disease susceptibility and explains the

observed association. However, for the vast majority of associ-

ated alleles, the identities of causal genes and variants, as well

as the function of these variants, remain uncertain. This Primer

discusses the population genetics features of rare and common

alleles, strategies for connecting these alleles to disease, and

strategies to prioritize them for functional follow-up studies.

Population Genetics of Rare and Common Alleles

Geneticists have long debated the extent to which rare and

common alleles contribute to complex disease (Pritchard,

2001; Pritchard and Cox, 2002; Reich and Lander, 2001).

Although there is evidence of susceptibility alleles across the

frequency spectrum in many complex diseases, it is important

to realize that rare alleles and common alleles have different pop-

ulation characteristics that are relevant to medical genetics.

The exact distinction between rare and common alleles is to an

extent an arbitrary one. We define common alleles as those with

frequencies >1%; these alleles are frequent enough that they

can be queried by genotyping in standard marker panels. Rare

alleles are polymorphic alleles with <1% frequency that might

be most effectively studied with sequencing technologies. The

rarest alleles are seen in only a handful of individuals or are

private to a single individual and can only be observed by

sequencing.

The Origin of Polymorphic Alleles

De novo mutations occurring spontaneously in individuals are

constantly and rapidly introduced into any population. These

mutations are initially ‘‘private’’ to the individual that they

occurred in but might then be passed on to progeny. Most of

these mutations are quickly filtered out or lost by genetic drift

and will never achieve appreciable allele frequencies. I illustrate

this concept by a simulation in which de novo neutral mutations

(conferring no effect on fitness) are introduced into a population

of 2,000 diploid individuals. In 31 generations, 95% of these

mutations disappear from the general population, and not one

of these mutations achieves an allele frequency of >1% in 200

generations (see Figure S1 available online). Mutations that are

deleterious are even more rapidly purged from populations.

Although any de novo mutation is very unlikely to become

a common allele, even a somewhat deleterious mutation may

persist for a few subsequent generations as a rare allele before

disappearing.

Thus populations harbor many rare alleles, most of which

have been derived recently, but relatively few common ones. In

fact, there is only about one common variant on average per

�500 bp in European populations (1000 Genomes Project

Consortium, 2010). On the other hand, recent and rapid ex-

pansion of human populations has resulted in the presence

of many rare alleles. At the extreme of the allele frequency

spectrum are de novo mutations; each individual harbors �40
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de novo point mutations that may not be present in any other

individuals (Conrad et al., 2011).

Common alleles tend to be more ancient than rare ones as it

takes many generations for a rare allele to rise to a reasonable

allele frequency. There are important exceptions to these gener-

alizations. An ancient allele may be rare because it is being

depleted from the population. A common allele may be recent

if it confers a critical survival advantage or has emerged after

a rapid population expansion from a small founder population.

Linkage Disequilibrium and Haplotypes

Genetic linkage is the tendency of alleles at nearby loci to be

transmitted together; two nearby loci are in linkage disequilib-

rium (LD) when recombination events occur between them

very infrequently. Two common metrics quantify pairwise LD

between biallelic markers (see Figure 1A). The R-squared (r2)

between two markers is their correlation across chromosomes

within a population. If two markers have r2 = 1, then alleles are

always in phase (or in cis) with each other; in a genetic study,

their association statistics will be identical. The D-prime (D0)

between two markers is inversely related to the fraction of chro-

mosomes that have had historical recombination between them.

If D0 = 1, two biallelic variants constitute only two or three haplo-

types, whereas if D0 < 1, all four possible haplotypes are present

in the population. If D0 = 0 or r2 = 0, then the two markers are

unlinked and statistically independent of each other.

Recombination events break down pairwise linkage between

markers over time and reduce the lengths of haplotypes in a pop-

ulation. Recombination events are much more likely to occur in

hot spot regions in the genome than in other regions (Myers

et al., 2005). As a result, markers without a recombination hot

Figure 1. Linkage Disequilibrium and

Haplotype Lengths
(A) Linkage disequilibrium metrics. Left: For two

markers that are random with respect to each

other, each with a 0.5 allele frequency, there is no

linkage between them; each resulting haplotype

has a frequency of 0.25. Middle left: Here the two

markers are not entirely random, and alleles at one

marker correlate partially with alleles at the other

marker. The A allele on the left is observed more

frequently with the C allele on the right, and the T

allele on the left is observed more frequently with

the G allele on the right. Middle right: Here the two

alleles are more tightly linked or have tighter LD

than in the previous case. In this instance, the

presence of the T allele on the left predicts with

certainty the G allele on the right. This could be the

case if the T allele arose de novo on a haplotype

with the G allele on the right Right: For in-

stances of tight LD, an allele at one marker

predicts perfectly the allele at the other marker; in

this case, these two markers form only two

haplotypes.

(B) Changing LD properties of a persistent de novo

mutation. A de novo event (circle), when it

first occurs on a chromosome (bottom), is on one

haplotypic background defined by the chromo-

somal markers on which it forms (red). As gener-

ations pass (moving upward), the event propa-

gates through the population. Recombination

events (Xs) occur, reducing the common haplo-

type (red) on which a variant is present and de-

coupling it from distal markers (blue).

(C) Simulating LD structure of a de novo event as it

becomes a common variant. Here a computer

simulation depicts a chromosome with 10,000

common markers with 1,000 randomly assigned

hot spots. Random mating occurs here with an

average of one recombination event per genera-

tion. A single rare variant is introduced in the

middle of the chromosome on one individual

(bottom) and allowed to propagate through the

population. The left panel depicts the allele fre-

quency as it increases through the generations

(upwards). In the middle panel, all markers in LD

with that variant (with D0 = 1) are indicated with

a red dot. Initially that variant is in LD with every

common marker that it is in phase with on that

chromosome, revealed by the red band stretching

across the bottom of the plot. As random recombination events occur and the allele becomesmore frequent, the number of markers in phase decreases, revealed

by the shrinking red band in the middle. On the right panel, a gray dot indicates markers for which the genotypes correlate with the rare variant (r2 > 0.5). For the

first few generations, there are no other variants that correlate with the de novo mutation as it becomes a rare allele. As time progresses and the allele becomes

more common, it begins to develop genotypic correlations with nearby variants that remain on the same haplotype.
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spot between them are often linked over long periods of time and

have high pairwise D0. Those markers can often be grouped into

a set of limited number of common haplotypes (see Figure 2A).

Phasing algorithms can be applied to determine markers in cis

and to define the most likely haplotypes.

Rare alleles generally sit on long haplotypes whereas common

alleles sit on shorter ones. When a mutation first occurs de novo

on a chromosome, it occurs on the background of a single rare

haplotype defined by all markers on that chromosome (see

Figure 1B). Because the de novomutation appeared as a random

event, it initially has no correlation with other markers on that

chromosome (r2 = 0). In initial generations, prior to a recombina-

tion event, the mutation has D0 = 1 with other markers across the

chromosome. But, if the mutation survives generations and

becomes a common allele, repeated recombination events frag-

ment that haplotype and reduce its length. The allele retains high

D0 to only proximate markers that are not separated from it

by a recombination hot spot. As the variant becomes more

frequent, so does the haplotype that it occurs on; over time the

emerging variant develops correlation (r2 > > 0) with the markers

on that short haplotype (see Figure 1C).

Finding Pathogenic Variants, Both Rare and Common

Common variant associations to phenotype are often facile to

find. Their high frequencies allow case-control studies to be

adequately powered to detect even modest effects. Their high

r2 to other proximate common variants allows for association

signals to be discovered by genotyping the marker itself or

other nearby correlated markers. But mapping those associated

variants to the specific causal variant that functionally influences

disease risk can be challenging because the statistical signals

invoked by intercorrelated variants are difficult to disentangle.

On the other hand, individual rare variant associations are

challenging to find. Their low frequency renders current cohorts

underpowered to detect all but the strongest effects, and lack of

correlation to other markers often prevents them from being

picked up by standard genotyping marker panels. But, once a

rare associated variant is observed, mapping the causal rare

variants is relatively facile because recent ancestry is likely to

limit the number of intercorrelated markers.

Functional Properties of Pathogenic Variants, Both Rare

and Common

Because common alleles tend to be ancient, they have weath-

ered the influences of purifying negative selection. Therefore,

common variants that influence disease risk are likely to have

functionally modest effects that are compatible with their high

population frequency. There are two possibilities outlined by

Kruyokov et al. that might allow for this (Kryukov et al., 2007).

First, common variants that are medically detrimental act subtly

or specifically to confer disease without altering evolutionary

fitness. As an example, consider a variant that confers risk of

Figure 2. Common Variants and Fine-

MappingwithConditionalHaplotypeAnalysis
(A) Common variants. This image illustrates the

structure of common variants and LD blocks. The

top lists a reference genome spanning�10 kb and

the reference genotypes of the polymorphic vari-

ants. The haplotype structure is broken up into two

blocks by a recombination hot spot. Each block

contains a set of markers in tight LD, which can be

phased into a small number of haplotypes. Below

that, a limitednumberof genotypesaredepicted for

a hypothetical individual because a commercial

array would assay only a limited collection of all of

the common variants in a region. The bottom row

demonstrates howdata for thosegenotypescanbe

phased using reference population data and how

missing genotypes can be imputed if the haplotype

can be inferred accurately. In some instances,

imputed genotypes may be uncertain.

(B) Fine-mapping with conditional haplotype anal-

ysis. The left-hand side lists genotypes at ten variant

sites (numbered) that define seven common haplo-

types. Each row represents a haplotype, and

genotypes at variant sites are listed in each column.

Assuming that a common variant association is

observed at marker 1, identical associations will be

observed at the markers 2, 3, and 5 because their

genotypes are correlated across haplotypes. In the

first step, haplotypes are grouped by marker 1. The

result is that the seven haplotypes form two

subgroups (indicated by purple and red bars on the

right). The purple group demonstrates association

with disease (right). Including marker 7 breaks the

groups up further into four haplotypes (indicated by

purple, green, blue, and red bars on the far right). By

adding marker 7, differential risk association

between haplotypes is apparent. Whereas the T/G

haplotype confers risk, the T/T haplotype confers

even more risk. Thus marker 1 alone does not

parsimoniously explain all of the risk at that locus.
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addiction to tobacco (Thorgeirsson et al., 2008). Such a variant

might have little impact on survival historically but might have

specific neuropsychiatric effects that mediate the risk of 21st

century diseases such as lung cancer or coronary artery disease

that play a role later in life after reproduction. Second, forces that

select specifically for these common variants counteract their

medically detrimental qualities; the variant, although causing

disease, also offers evolutionary benefit simultaneously. For ex-

ample, common ApoL1 variants that confer high risk of chronic

kidney disease in African Americans protect from Trypanosoma

brucei rhodesiense infection at the same time (Genovese et al.,

2010).

Because rare alleles are typically more recent, they may not

have been subjected to the same negative selective pressures

yet and may include among them more relatively deleterious

mutations. Rare alleles therefore often are enriched for those

variants more likely to have more dramatic functional conse-

quences. This is supported by data indicating that rare deletions

are more likely than more common deletions to remove entire

genes, exons, promotors, or stop codons (Conrad et al., 2010).

Similarly, rare variants are twice as likely as common ones

to be nonsynonymous (1000 Genomes Project Consortium,

2010). Because rare variants are relatively unrestricted in terms

of their functional impact in general, a subset of rare pathogenic

variants with large effect might offer more obvious insight about

disease mechanism.

Common Variants

Detecting Common Variants with High-Throughput SNP

Arrays

High-throughput genotyping of standard marker panels of

common single-nucleotide polymorphisms (SNPs) has become

possiblewithmicroarrays (Gunderson et al., 2005). Their applica-

tion to large case-control sample collections has facilitated

detection of even the most modest risk alleles, with odds ratios

of 1.1 or less. There are a finite number of common variants

present in the general population, i.e., <6 million are estimated

in European populations (1000 Genomes Project Consortium,

2010). But nearby common SNPs are in LD with one another

and define a limited number of haplotypes (see Figure 2A), so

the effective number of independent variants is much fewer.

Thus, genotyping a limited number of common variants

genome-wide has the effect of coveringmanymore common vari-

ants. In European populations, the Affymetrix 5.0 array with 440K

SNPs has r2 > 0.8 for 57%of common variants, and the Affymetrix

6.0 array with roughly double the number of SNPs (900K) has

r2 > 0.8 for 66% of common variants (Bhangale et al., 2008).

Box 1. Glossary

Associated allele: An allele that, in a genetic study, is observed to

have differential allele frequencies in cases compared to controls.

The presence of an association suggests that it, or some other variant

in LD, is influencing disease susceptibility.

Causal allele: The functional allele that influences disease suscepti-

bility and explains the observed associated allele.

Common alleles: Alleles with a high population frequency, typically

defined as >1%. Standard marker panels can often be used to iden-

tify common allele associations.

Rare alleles: Alleles with a lower allele frequency of <1%. These

alleles can be polymorphic in the population being seen in multiple

distantly related individuals; alternately they might be alleles that

are private to an individual or seen in a small number of closely related

individuals.

De novo mutations: A mutation that has occurred in an individual

and that was not inherited from a parent. These mutations are initially

private. If a de novo mutation is passed on and persists through

generations, it can become a polymorphic allele.

Linkage disequilibrium (LD): Two polymorphic loci are in LD when

they are colocated, and alleles at those loci are distributed nonran-

domly with respect to each other on chromosomes in the population.

Linkage disequilibrium is present when recombination events

between two loci occur infrequently. Two metrics for LD are r2

and D0 (see Figure 1A).

Recombination hot spots: Individual regionswithin the genome that

have frequent recombination events.

Negative selection: Selection acting to remove new deleterious

mutations that reduces evolutionary fitness of an individual. Also

known as purifying selection.

Positive selection: Selection acting to propagate new advanta-

geous mutations that increase evolutionary fitness of an individual.

Balancing selection: Selection acting to increase allelic variability at

a locus.

Genotype imputation: A statistical technique to infer missing geno-

types in a set of individuals using a reference panel of genotyped indi-

viduals. Imputation exploits LD between genotyped and ungeno-

typed variants.

Genome-wide significance: A level of statistical significance

typically used to establish association for a common variant in

genome-wide association studies (p = 5 3 10�8), which assumes

that there are�1,000,000 effective independent tests genome-wide.

Stratification: A genetic confounder if there are differences in the

ancestral origin of cases and controls. The resulting systematic allele

frequency differences can result in false-positive associations.

Genomic inflation factor (l): The ratio of themedian of the observed

chi-square statistics for an association study and the expected

median chi-square statistic. If there is stratification, the test statistic

is inflated, causing the genomic inflation factor to be substantially

greater than 1, resulting in inappropriately significant p values.

Fine-mapping: The use of dense genotyping data around an associ-

ated allele to identify the causal allele(s) to account for the observed

statistical signal in the region.

Second-generation sequencing: Recent sequencing technologies

not using Sanger chemistry that characteristically generate many

short read sequences.

Targeted region: The region of the genome selected for a sequenc-

ing experiment.

Whole-genome sequencing: A sequencing experiment where the

full �3 GBp of whole genome is sequenced. Does not require

DNA capture. For most medical genetic studies, the sequencing

Box 1. Continued

data are not reassembled but mapped to a reference genome

sequence.

Whole-exome sequencing: A sequencing experiment where the

protein-coding sequences of all known genes are targeted, captured,

and sequenced (�30 Mbp).

Coverage: In a sequencing experiment, coverage at a genomic posi-

tion is the total number of reads mapped to that position.
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Genome-wide genotyping also allows investigators to use

imputation to estimate genotypes of markers not directly geno-

typed; in doing so, it becomes possible to combine samples

genotyped on different platforms. Probabilistic multipoint impu-

tation algorithms, using a limited number of genotyped common

variants, can determine the genotypes of ungenotyped common

variants by comparing to a reference panel of comprehensively

genotyped individuals (see Figure 2A). Most of these methods

currently use probabilistic Hidden Markov Model approaches

to infer the local LD structure (Browning, 2008; de Bakker

et al., 2008).

Selecting Populations for Study

Initial efforts to map complex traits emphasized selected iso-

lated populations, for example the Finish populations (Peltonen

et al., 2000). These populations can offer the advantage of

increased inbreeding, more uniform genetic and environmental

backgrounds, detailed genealogical records, availability of intact

extended families, and longer LD intervals. Populations that have

undergone rapid population expansion may be of particular use

because LD intervals are longer. The most successful validation

of this approach is represented by deCODE genetics and their

study of a wide-range of complex diseases in Iceland.

Now, investigators are increasingly focused on the inclusion of

individuals frommultiple ethnic backgrounds in order to enhance

the ability of studies to discover risk alleles with variable allele

frequencies across different backgrounds (Rosenberg et al.,

2010). Different ethnic backgrounds might highlight different

mechanisms of disease pathogenesis, including differences in

environmental exposures, as well as reflect different degrees

of genetic diversity and LD patterns. A striking example of this

is the discovery of an IL18B variant that predicts response to

hepatitis C treatment with equivalent effect in European, African,

and Hispanic American patients; allele frequency differences of

the variant explain about half of the differences in treatment

response across populations (Ge et al., 2009).

Genome-wide Association Studies

In a case-control genome-wide association study (GWAS),

samples are genotyped for a set of 100,000–2,000,000 markers;

case and control allele frequencies are compared directly to each

other. Statistical significance is assessedwith a simple 23 2 chi-

square test or with logistic regression when genotypes are prob-

abilistic (e.g., from imputation).

Critical to the success of GWAS has been the application of

stringent statistical significance thresholds that result in repro-

ducible associations that account for the large number of simul-

taneous tests (Risch and Merikangas, 1996). Testing for com-

mon variant associations throughout the genome represents

�1 million independent tests (Hoggart et al., 2008). Thus investi-

gators routinely use a genome-wide significance threshold

representing a Bonferoni correction for multiple tests (p = 0.05/

106 = 5 3 10�8).

Because effect sizes for most common variants are modest,

large sample sizes and careful adjustment for subtle technical

artifacts that can easily obscure results or produce false-positive

associations are of paramount importance (Balding, 2006; Clay-

ton et al., 2005; McCarthy et al., 2008). The genomic inflation

factor is an important metric that indicates the extent of inflation

due to stratification and other technical confounders. Fortu-

itously, the strength of genome-wide genotyping goes beyond

simply measuring case-control allele frequency differences

throughout the genome. It also allows investigators to look at

patterns in the genotyping data to identify key technical

confounders. For instance, patterns of excessive ‘‘missing’’

genotype data for an individual indicate that intensity data could

not be clustered into genotype, likely as a function of low DNA

quality or concentration. Another key confounder is population

stratification, that is the presence of the systematic allele fre-

quency differences observed in a population as a consequence

of ancestry rather than case-control status. As a dramatic

example, Campbell et al. showed, even in studies using only

European populations, that not carefully adjusting for an individ-

ual’s country of origin results in a highly statistically significant

false-positive association for height at a lactase SNP (Campbell

et al., 2005). Genome-wide genotype data allow investigators

to identify and correct for case-control population stratification.

Once markers are identified as having statistically significant

allele frequency differences in cases and controls, they are

ideally replicated in independent populations. Replicating in an

independent population not only adds statistical confidence to

the results but also adds confidence that the results of the initial

study are not the consequence of technical confounding or strat-

ification.

Identifying an associated marker rarely clarifies whether the

marker itself is the functional allele that causes altered disease

susceptibility. The observed association at a marker might be

the result of an underlying causal allele with high r2with the asso-

ciated variant, a rare functional allele on a haplotypic back-

ground shared with the associated variant, or multiple functional

alleles that cause an apparent association. Nevertheless, the

causal alleles must closely correlate and be in LD with associ-

ated variants.

Fine-Mapping Common Variant Loci

Dense genotyping of markers in the region, followed by fine-

mapping, can identify the causal allele, or at least reduce the

number of potential candidates. The underlying assumption is

that the causal allele will most parsimoniously explain the entirety

of the evidence of association. In many instances, however, fine-

mapping is complicated if the association is not being driven by

a marker that has been genotyped; in those instances, it might

be possible to identify a risk haplotype defined by genotyped

markers and to then sequence selected individuals to identify

the causal allele. Thus in order to fine-map effectively, dense

genotyping to include all known markers in the region is key.

Additionally, in many instances there might be multiple causal

alleles, and in order to be powered to detect multiple effects, it

is often necessary to densely genotype a large number of sam-

ples, perhaps more than those used to discover the association.

After densely genotyping a large number of samples, there are

two major statistical tools utilized in fine-mapping common vari-

ants. The first is conditional regression. If a single leadmarker (or

another marker in perfect LD with it) is causal, then applying

conditional regression adjusting for that lead marker should

obviate all other association in the region. The second statistical

tool is conditional haplotypeanalysis (Figure2B).With conditional

haplotype analyses, investigators start with data from a subset of

the genotyped markers and phase genotypes to define
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haplotypes. If the selected markers are causal, then the defined

haplotypes should parsimoniously explain the risk at that locus.

That is, the addition of additional markers (and thus creation of

more haplotypes) should not explain risk better, and removal of

any marker (and thus removal of haplotypes) should reduce the

explained risk. With both approaches, if the causal allele is in

perfect LD (r2 = 1) with other markers, then distinguishing

between statistically identical associations may not be possible.

One striking example of fine-mapping was an effort by Pereyra

et al. where they used GWAS to demonstrate that multiple

HLA-B classical alleles are associated with long-term viral load

control in HIV-infected individuals (Pereyra et al., 2010). Then,

with conditional haplotype analysis, they demonstrated that

allelic risk was best defined by amino acid variation at a few sites

along the binding groove of HLA-B.

Data from multiple ethnic populations may be particularly

useful to fine-map associations (Rosenberg et al., 2010). Ideally

a single allele might explain risk across multiple ethnic groups.

This approach is effective only if the same causal allele is present

with a high allele frequency in both, and there are ethnic differ-

ences in local LD structure. The inclusion of African populations

might be particularly useful because LD patterns are generally

shorter. This approach might be complicated if multiple different

alleles in populations influence disease susceptibility within the

same locus. Adrianto et al. looked at SNPs associated with

systemic lupus erythematosus (SLE) spanning the TNFAIP3

gene (Adrianto et al., 2011). When they looked at markers asso-

ciated in Asian and European populations, they were able to fine-

map the associated region from a span of �100 kb to �50 kb.

Subsequent sequencing identified a novel AA > T single base

pair deletion polymorphism that acts to disrupt an NF-kb binding

site. This single variant explained the associated risk of the locus.

Rare Variants

It is possible that associated rare variants for complex diseases

will be more facile to fine-map and to evaluate for functional

impact. The discovery of a rare variant near a common variant

might be particularly informative. A rare variant that clearly

impacts one of the candidate genes implicated by a common

variant might clarify which of the candidate genes is pathogenic.

Furthermore, the rare variant’s function might offer clues about

the mechanism of the common variant. There have been several

examples of this phenomena reported in the literature already.

Common alleles associated with type II diabetes are near five

genes, PPARG, HNF1A, KCNJ11,WFS1, and HNF1B, that have

rare mutations that cause familial forms of diabetes (Voight et al.,

2010). Similarly, 18 of the 95 known common variants associated

with serum lipid levels are near genes that have been implicated

in monogenic lipid disorders (Teslovich et al., 2010). Indeed

studies to find rare coding variants near common risk loci have

already shown success in type I diabetes (Nejentsev et al.,

2009), age-related macular degeneration (S.R. and J. Seddon,

unpublisheddata), andCrohn’sdisease (Momozawaet al., 2011).

The extent to which rare variants explain complex disease

susceptibility in general remains an open question. It has been

speculated that the gap between the heritability explained by

known common variants and that which might be predicted

from family studies might be explained by rare variants (Bansal

et al., 2010), and that even many observed common variant

associations might be the consequence of functional undiscov-

ered rare variants (Anderson et al., 2011; Dickson et al., 2010).

Other investigators have suggested that undiscovered common

variants themselves might explain much of that missing herita-

bility (Purcell et al., 2009; Yang et al., 2010).

Identifying Rare Variants with High-Throughput

Sequencing

Advances in DNA capture and sequencing technology have

greatly facilitated targeted, exome, and whole-genome se-

quencing (Maxmen, 2011; Ng et al., 2010) and have in the

process enhanced the search for rare variants. Whereas the

cost of sequencing is rapidly dropping, the computational and

statistical challenges to rapidly aligning sequences to reference

sequences, separating variant calls (SNPs, indels, and structural

variants) from sequencing artifact, data storage, and establish-

ing associations are mounting (McKenna et al., 2010).

Second-generation sequencing technologies have now come

online and are distinct from prior approaches in that they do not

use Sanger chemistry and are characterized by high sequencing

yield with shorter reads (Shendure and Ji, 2008). The Illumina

HiSeq 2000 system, for example, generates >1 billion 100 bp

paired-end useable reads per run. Efficiently mapping a large

volume of short reads to the reference genome accurately has

been an important area of methodological progress (Li and

Homer, 2010). Look-up (or hash-table) based methods map

reads quickly but are not as accurate as less-efficient align-

ment-based methods. Accurate alignment is especially impor-

tant in regions with short insertions or deletions (indels); poor

alignment in such regions can result in false-positive SNP

calls and false-negative indel calls. Repetitive genomic regions

and regions with homology can be challenging to map and,

in some instances, may not be possible to query effectively.

Paired-end sequencing generates two sequence reads from

opposite ends of the same contiguous genomic fragment and

helps overcome some of these alignment issues.

To sensitively and accurately call a heterozygote nonreference

base, a minimum of �203 coverage is necessary to overcome

the uncertainty resulting from sampling short sequence reads

across a diploid genome. Additional coveragemay be necessary

to compensate for random and nonrandom sequencing error,

which may vary across technologies. Even with a high-coverage

sequencing experiment, the coverage is typically nonuniform

across the targeted region. Nonuniform coverage can be related

to biases in DNA capture technologies, in unequal pooling of am-

plicon products from different genomic regions or individuals,

and in intrinsic sequence properties (Harismendy et al., 2009).

Careful experimental technique and sample normalization can

minimize some biases in coverage. Average coverage of an

experiment is thus not as useful of a metric as is the percentage

of target genomic region achieving more than a prespecified

coverage threshold. A set of independently genotyped SNPs to

verify sequence-based genotype calls and assess the accuracy

of sequencing studies is useful to confirm accuracy.

Sequencing can be applied to a set of samples to discover

variants or to genotype variants. For variant discovery, sequence

data can be pooled across multiple samples to boost power to

detect a nonreference base. After application of sequencing to
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discover rare variants, confirming the presence of the variant in

discovery samples with TaqMan or capillary electrophoresis

sequencing is useful before exploring in independent samples

to establish disease association.

Power Considerations and Significance Testing

One of the challenges to establishing a rare variant disease

association is that in any given study, few variants are observed.

Therefore, genetic studies are more poorly powered to detect

a rare SNP association than they are to detect more common

association with the same effect size (see Figure 3). Thus to

detect associations at the same statistical threshold, sample

collections larger than those currently used might be necessary.

Establishing association of de novo or private mutations may not

be possible at all because they may be seen only once in an

entire study.

For rare variant associations, the field has not yet defined

accepted standards for statistical significance that account for

the burden of multiple hypothesis testing. Because there are

many more rare variants than common ones, and they are not

typically intercorrelated with each other, a more stringent

threshold may be necessary than applied for common variants.

One conservative approach is to correct for the total number of

bases genome-wide, i.e., p = 0.05/3 3 109 � 10�11 as a signifi-

cance threshold. Most recent studies have limited themselves to

exomes or to a subset of targeted genes; in these instances the

multiple-hypothesis testing burden might be significantly less.

But with spectre of genetic studies with genome sequencing in

the very near future, this conservative threshold may ultimately

turn out to be appropriate.

Despite limitations in power and the need for achieving greater

significance, rare variant associations with strong effects might

be imminently detectable. For instance, as part of a genome-

wide study, Holm et al. were able to identify a rare variant for

sick sinus syndrome (Holm et al., 2011); the coding variant that

explained the association was highly statistically significant in

a modestly sized cohort as it had such a large effect size (odds

ratio [OR] > 12). One strategy to further enhance the prospects

of discovery is to identify those individuals most likely to have

highly penetrant rare mutations. For example, individuals with

younger onset or more severe disease, those with familial forms

of disease, or those individuals that have disease despite a lack

of other clinical or genetic risk factors might be promising candi-

dates for rare variant association studies.

Burden Testing

If a genomic region is critical to disease pathogenesis, rare muta-

tions may modulate disease susceptibility. Then, many affected

individuals may have rare mutations more frequently in that

region, though themutationsmay be different from and unrelated

to one another. This concept has sparked interest in the genetics

community, and workers in statistical genetics have devised

strategies to examine rare variants in aggregate across a target

region (Bansal et al., 2010). These ‘‘burden’’ tests assesswhether

rare variants within a specific region are distributed in a non-

random way, suggesting that they might be playing a role in dis-

ease pathogenesis (see Figure 3B). For example, a simple burden

test might assess whether cases are enriched for rare variants

compared to controls. More sophisticated tests account for the

possibility that the region contains both protective and risk-

conferringmutations. The target regionmight be a specific subre-

gion of a gene, an entire gene transcript, or the entire genome.

This approach is an important alternative to the challenging

task of establishing the association of individual rare variants;

using these approaches to test multiple variants simultaneously

might enhance power over testing individual variants. For

instance, a burden test might be able to identify nonrandom

distributions even of private mutations.

In an early application of rare variant burden testing, Cohen

et al. examined individuals from the general population with

high and low HDL levels and assessed the burden of rare varia-

tion in three candidate genes known to harbor Mendelian muta-

tions that cause familial low serum high-density lipoprotein (HDL)

levels (Cohen et al., 2004). They found that individuals with low

HDL levels were significantly more likely to contain rare nonsy-

nonymous mutations than those with high HDL levels; of the

low HDL individuals, 16% had at least one rare mutation,

compared to 2% of high HDL individuals. This suggested

Figure 3. Power to Find Rare Variants and

Burden Testing
(A) Power to find rare variants. Here is a plot of 80%

power to discover rare associated alleles at p <

10�7 and p < 10�11 for cohorts of both 500 and

5000 cases and controls. The control allele fre-

quency and odds ratio (OR) are plotted along the

x axis and the y axis, respectively. Diagonal lines

indicate corresponding case allele frequencies.

(B) Burden testing. Here data from sequenced

cases (top) and controls (bottom) are depicted

around a gene of interest. Each horizontal line

represents an individual. Variants are shown as

red Xs. Certain variants are rare (i.e., seen once),

and others are more common (vertical line). In this

example, the case variants within the candidate

gene (arrow at bottom and blue shading) are seen

more frequently than in controls. If common vari-

ants are excluded, there are five case chromo-

somes with a rare variant compared to one control

chromosome. This pattern of enrichment is not

evident outside the gene. A burden test of asso-

ciation for rare variants within the gene might be

statistically significant.
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strongly that for individuals with low HDL levels, �14% of them

may have mutations in these three genes mediating phenotype.

The idea of comparing the proportion of case individuals with

rare alleles to control individuals with rare alleles was formalized

into a statistical test, the ‘‘Cohort Allelic Sums Test’’ (CAST)

(Morgenthaler and Thilly, 2007). Subsequently, more sophisti-

cated tests have been proposed that allow investigators to

combine association testing of rare and common alleles by either

testing for association together in multivariate tests (Li and Leal,

2008) or combining rare and common alleles weighted inversely

to their allele frequency (Madsen and Browning, 2009).

One very powerful way of enhancing burden testing is to filter

variants that aremore likely to be causal from those that are likely

not to be causal. For example, investigators may focus their

studies on nonsynonymous alleles. Alternative approaches

might include filtering variants based on sequence conservation

properties or other bioinformatics approaches (Adzhubei et al.,

2010; Ng and Henikoff, 2003).

A successful test, where statistical significance is obtained,

can be used to argue that (1) the tested rare variants play a

role in a specific disease, and (2) the target region tested plays

an important role in disease pathology. But, it fails to implicate

specific variants, and ambiguity about the causal variants might

remain. For example, if rare variants are enriched in a gene 2-fold

in cases compared to controls, then roughly half the variants

seen in cases might be pathogenic, but the other half are part

of the background distribution of rare variation in that gene and

may not influence disease risk.

Structural Variants

Rare structural variants have gained recent interest; the

frequency and size of structural variants have repeatedly shown

enrichment in schizophrenia and other neuropscychiatric dis-

ease (International Schizophrenia Consortium, 2008; Sebat

et al., 2007;Walshet al., 2008).However, except for a fewspecific

regions such as 22q11 and 16p11, most rare events have uncer-

tain pathogenecity. For instance, although the rates of >100 kb

deletion events are significantly increased in cases compared

to controls, there is great uncertainty as to which individual

events are pathogenic andwhich ones are nonpathogenic events

that might occur in the general healthy population. This is analo-

gous to the circumstance that might occur with a statistically

significant burden test for point mutations, described above.

Extended Haplotypes

As previously discussed, many rare variants are recent and

occur on extended haplotypes that can be identified using

common variant markers. Thus GWAS datasets may be used

to identify long-range haplotypes based on common markers

and to then assess whether they are associated with phenotype.

If this is the case, the phenotypic association might be driven by

a highly penetrant rare variant. We used this approach to find an

extended haplotype in the CFH gene that conferred high risk of

age-related macular degeneration; subsequent sequencing

identified the causal mutation to be an argenine to cysteine

change in the C terminus of the protein (S.R. and J. Seddon,

unpublished data).

This approach might be most effective in isolated populations

where reduced genetic diversity and founder effects make it

possible to identify long-range haplotypes (Kong et al., 2008).

One recently published method to identify long and rare haplo-

types, and to then test for association to phenotype, has been

successfully applied to multiple phenotypes in out-bred popula-

tions (Gusev et al., 2011).

From Variants to Function

Translating rare and common variants to function can be chal-

lenging. In many instances the presence of an association

does not clarify which variants are functionally causing disease

susceptibility. For common variants, fine-mapping might be

stymied by local LD. For rare variants, burden testing might be

able to identify a genomic region enriched for rare variants but

may not be able to specifically distinguish the individual causal

rare variants from spurious nonpathogenic variants. Here we

describe broad approaches that might be pursued to clarify

pathogenic functions and causality, in the absence of genetic

mapping that has clearly identified a single causal variant.

Evaluating Nonsynonymous Coding Variants

About 1% of the genome consists of protein-coding sequences.

Variants in this portion of the genome are potentially the most

amenable to follow up by biochemical characterization of the

protein product in vitro, characterization in cell lines, or evalua-

tion in transgenic model organisms. Only a minority of associ-

ated common variants can be explained by a nonsynonymous

coding variant (�10%) (Hindorff et al., 2009). Currently, most

studies of rare variation emphasize nonsynonymous coding vari-

ants; in many cases, noncoding variants are altogether ignored

even if they are sequenced. An important challenge in the field

is to prioritize discovered coding variants for potentially time-

consuming functional follow up.

Computational approaches can be effective at assessing the

degree to which a specific amino acid substitution in a protein,

induced by a variant, might disrupt function. The functional

impact of a substitution can often be estimated by using informa-

tion about sequence conservation at the mutated site from

comparative sequence analysis of a gene with orthologs and pa-

ralogs. If an amino acid site in a protein sequence is functionally

critical, then most de novo mutations are deleterious and are

subject to purifying selection; these sites then are expected to

show little variation. Thus, a nonsynonymous allele from a study

in a highly conserved site is likely to be deleterious. Sequence

conservation in organisms more closely related to human is

particularly informative because more distantly related organ-

isms may have divergent biology and protein function. Many

software tools using these principles to assess coding variants

have now been devised (Cooper and Shendure, 2011). One

example of such a program is Polymorphism Phenotyping 2 (or

PolyPhen 2) (Adzhubei et al., 2010). The most predictive features

in this method are the estimated likelihood that the mutant allele

fits the substitution pattern observed in the multiple-sequence

alignment; the evolutionary distance to the organism with a

protein harboring a similar nonsynonymous substitution; and

whether the mutant allele occurs at a site that is hypermutable.

The method uses these features and others, including informa-

tion from the three-dimensional protein structure, to define

a statistical model that includes the probability of disease based

on a catalog of known pathogenic Mendielian mutations. The

functional importance of an amino acid replacement is predicted
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from these features based on a naive Bayes classifier. PolyPhen

2 and other related methods demonstrate similar performance in

their ability to predict pathogenic mutations achieving an area

under the curve (AUC) of 75%–80% (Hicks et al., 2011).

Experimental approaches to individually interrogate rare vari-

ants with functional assays can also be very powerful. But, for

an approach to be effective, it is critical that the functional assay

is high throughput, and that it has an assayed function that is

relevant to the phenotype. Otherwise, mutations that affect the

assayed gene function might not in fact be pathogenic. In one

application of this approach, Davis et al. used it to look at indi-

vidual mutations with the TTC21B gene and to show that they

cause human ciliopathies (Davis et al., 2011). First they demon-

strated that a translation-blocking morpholino specific for

TTC21B resulted in gastrulation defects in zebrafish that were

consistent with cilliary dysfunction. Then, when they rese-

quenced TTC21B in a large, clinically diverse ciliopathy cohort

and matched controls, they observed a similar frequency of

rare variants. But, when they tested those rare alleles to identify

those that caused gastrulation defects in zebrafish, they

observed a significant enrichment of functional alleles in cases

compared to controls.

Evaluating Noncoding Variants

Noncoding variants pose a particular challenge to the field

at the moment. The noncoding genome represents 99% of the

genome and at present is poorly annotated (Alexander et al.,

2010). About 10% of the noncoding genome is under purifying

selection, suggesting that they harbor critical processes that if

disrupted could be pathogenic (Davydov et al., 2010). Many

common variants, if they contribute to disease, likely act by im-

pacting the noncoding genome. As one example, an associated

Crohn’s disease SNP in LD with polymorphic deletion overlaps

the IRGM gene promotor and modulates gene expression

(McCarroll et al., 2008). In the last several years, however, several

promising approaches have emerged to evaluate noncoding

variants that might point the way to causality, such as analyzing

sequence conservation, gene expression, and chromatin state.

Sequence Conservation

A computational approach to prioritizing noncoding variants is to

identify those that are at sites with a high degree of sequence

conservation across mammalian organisms and are thus under

purifying negative selection (Cooper et al., 2005; Miller et al.,

2007). These approaches differ from those approaches used to

prioritize coding substitutions, as they can only use nucleotide

sequence similarity. Indeed, investigators have argued that the

conservation information from nucleotide sequences is as

predictive as the information gained by peptide sequence simi-

larity and protein structural features (Cooper et al., 2010). The

value of assessing common variants with sequence conserva-

tion approaches is uncertain, as common variants are presum-

ably not under purifying negative selection. But, rare noncoding

variants that have dramatic effects on disease susceptibility

might be effectively prioritized with this approach.

eQTL Data Can Suggest Causal Genes and Mechanism

Expression quantitative loci (eQTL) are genetic variants that

correlate with the transcript level of a gene (Jansen and Nap,

2001). To date, most reported eQTLs are cis-effects, acting on

nearby genes by encoding variants that modulate promotor

activity, enhancer activity, or mRNA stability. Expression QTL

acting in trans have been largely unexplored thus far. Although

most recently discovered eQTL have been common variants,

there is evidence of rare eQTL also (Montgomery et al., 2011).

Identifying rare eQTL might be challenging given the limited

power of currently sized cohorts. In the future, burden tests

previously described might be able to effectively identify small

genomic regions where rare variants dramatically impact tran-

script levels.

It has been shown that common trait-associated variants have

a significant overlap with eQTL, suggesting the possibility that

many common disease variants act by altering transcript levels

(Nicolae et al., 2010). Thus, it might be insightful to assess

whether a specific disease-associated common variant is itself

an eQTL. If it is, then the gene whose transcript is influenced

by the risk allele might be the causal gene. Furthermore, if the

risk allele is increasing the transcript level, then the gene may

increase disease risk by magnifying gene function; alternatively,

if the risk allele reduces transcript level, then the genemay cause

disease by mitigating gene function. A convincing eQTL effect

can be isolated by transfecting constructs with risk haplotype

fragments, as was done to identify the causal variant in the

SORT1 lipid locus (Musunuru et al., 2010). Another compelling

example of an eQTL that influences disease susceptibility is

a type II diabetes-associated variant upstream of the KLF14

transcription factor. Investigators showed that this variant acts

not only as a cis-eQTL influencing KLF14 levels in adipose tissue

but also as a trans-eQTL formany genes regulated byKLF14 that

are important in metabolic traits (Small et al., 2011).

There are a few important caveats about this seemingly

straightforward approach.

First, because eQTL are spread throughout the genome,

spurious overlap between disease-associated variants and

eQTL is possible (Nica et al., 2010). If a risk variant confers risk

by modulating transcript levels, and it is itself causal (or in LD

with the causal variant), then it should also be consistent with

the strongest eQTL effect in the region. Checking to ensure

that the disease-associated variant is consistent with the stron-

gest eQTL effect itself mitigates the risk of spurious overlap.

However, it is still possible that the causal allele and the stron-

gest eQTL effect are strongly correlated by chance, and that

eQTL association is unrelated to disease risk.

Second, although many eQTL act generically, most are tissue

specific (Dimas et al., 2009; Price et al., 2011). In fact, certain

eQTL may not be detectable unless the cell has responded to

a specific stimulus or stress. In order to understand the tran-

scriptional impact of disease alleles most effectively, identifying

eQTL in the pathogenic tissues is key. Current eQTL databases

are based on a small number of resting cell types, for example

lymphoblastoid cell lines (Stranger et al., 2007). Many important

pathogenic tissues are not easily accessible for eQTL studies. In

the near future, the catalog of available tissues profiled will

expand dramatically with the NIH-sponsored Genotype Tissue

Expression (GTEx) project, aiming to profile >60 separate tissues

(https://commonfund.nih.gov/GTEx/).

Finally, although eQTL data can offer potential in identifying

the likely causal gene and provide hints about mechanism for

common variants, they may not clarify ambiguity about the
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causal variant if there are multiple variants in LD. Certain variants

may seem more promising, for example structural variants or

SNPs overlapping a regulatory variant. As with disease-associ-

ated common variants, eQTL datasets often face challenges in

fine-mapping signals.

Chromatin Modifications

Identifying regions of the genome that act as regulatory elements

can offer important complementary information to eQTL data

in evaluating noncoding variants. Specific functional regulatory

elements can be identified from genome-wide profiles of key

histone modifications: H3K4me3 marks active promoters;

H3K4me1 marks enhancers; H3K4me2 and most histone acety-

lation mark both promoters and enhancers (Barski et al., 2007;

Heintzman et al., 2007; Wang et al., 2008). Similarly, DNase I

hypersensitive sites also flag open chromatin regions harboring

promoters and enhancers (Sabo et al., 2006). With the advance-

ment of high-throughput sequencing technologies and develop-

ment of techniques such as ChIP-seq (Park, 2009) and DNase-

seq (John et al., 2011), there are mounting public data on

genome-wide chromatin profiles. For instance, histone mark

ChIP-seq and DNase-seq data on over 100 cell lines and tissues

have now been generated through the ENCODE and Roadmap

Epigenomics projects (Bernstein et al., 2010; Birney et al., 2007).

Although computational approaches to identify putative

binding sites based on sequence data alone are nonspecific,

recent reports suggest that the prediction of active regulatory

sites within assayed tissues is possible by including ChIP-seq

and DNase-seq data (Ernst and Kellis, 2010; He et al., 2010;

Pique-Regi et al., 2011; Song et al., 2011). One potential

approach then to prioritize noncoding variants for follow up is

to identify those that are in regions that have been predicted to

be regulatory elements. These variants might, for example,

disrupt or enhance a transcription factor binding at an enhancer

or a promoter. Particularly promising variantsmight be those that

have eQTL activity in the same cell type. Histone mark locations

and DNase hypersensitive sites have been shown to be enriched

near associated variants (Ernst et al., 2011; McDaniell et al.,

2010). A key limitation of this approach is that, like eQTL data,

it requires genome-wide chromatin data from the same or similar

cell types as those that are pathogenic.

Identifying Causal Processes with Integrative Analyses

In many instances where the specific causal variant within a

locus cannot be identified, examination of the genes implicated

may still help to suggest the key underlying functional networks

and pathways that might be active in a disease. For instance,

age-related macular degeneration associations have implicated

the complement pathway without necessarily identifying causal

variants. This task can be challenging in general because for

any given associated allele, 20 or more genes might be impli-

cated by LD, and any of them may harbor the causal mutation.

But despite that, statistically significant connectivity between

genes in different associated loci can often be identified. We

and others have devised strategies to look for functional connec-

tions or similarity between genes across implicated loci. These

networks can predict novel gene loci and offer insight about

disease mechanism. Gene Relationships Across Implicated

Loci (GRAIL) uses >400,000 published scientific PubMed texts

to assess pairwise gene similarity between genes across loci

(Raychaudhuri et al., 2009a). In addition to repeatedly showing

highly statistically significant connectivity between genes across

loci in multiple diseases, GRAIL has been used to prospectively

predict and prioritize associated variants (Raychaudhuri et al.,

2009b) and prioritize disease genes within a locus (Beroukhim

et al., 2010). Investigators used a similar approach, Disease

Association Protein-Protein Link Evaluator (DAPPLE) algorithm,

to demonstrate that protein-protein interactions are enriched

among genes within disease loci more than by chance alone

(Rossin et al., 2011). They demonstrated enrichment most con-

vincingly in autoimmunediseases and furthermoredemonstrated

that the enrichment of interactions was often between genes

within the same immune cell types. These networks offer insight

as to how protein products of genes across many loci might be

interacting together to initiate disease. We note importantly

that pathway analyses can be easily confounded, in particular

in neuropsychiatric diseases because there is a correlation

between the sizes of transcripts and the likelihood that they will

have brain function (Raychaudhuri et al., 2010).

Conclusions

The advances in genotyping and sequencing technologies over

the last few years have revolutionized genetics. Only a few years

ago, researchers were still tackling the challenges of gene

mapping and discovery of complex diseases. Now we face an

embarrassment of riches in which the ability to map loci has

become quick and reproducible. The next important challenge

is streamlining functional validation, which in most cases is still

a critical bottleneck. Rare variant discovery has the potential to

yield more obviously functional variants with larger effect sizes

because they are less constrained by purifying selection. The

discovery of rare variant associations might shed light on those

loci discovered by common variant mapping. However, strate-

gies to prioritize functional follow-up studies will be key at those

loci where common variants cannot be effectively fine-mapped

or individual rare variants (beyond the presence of case enrich-

ment) cannot be identified. Strategies to use regulatory variants,

chromatin state data, and sequence conservation offer a poten-

tial path forward to prioritize candidate variants.

SUPPLEMENTAL INFORMATION

Supplemental Information includes one figure and can be found with this

article online at doi:10.1016/j.cell.2011.09.011.

ACKNOWLEDGMENTS

The author would like to acknowledge helpful discussions and feedback from

colleagues including Drs. Mark Daly, Paul I.W. de Bakker, X. Shirley Liu,

Cynthia Sandor, Eli A. Stahl, Barbara E. Stranger, and Shamil Sunyaev.

REFERENCES

1000 Genomes Project Consortium. (2010). A map of human genome variation

from population-scale sequencing. Nature 467, 1061–1073.

Adrianto, I., Wen, F., Templeton, A., Wiley, G., King, J.B., Lessard, C.J., Bates,

J.S., Hu, Y., Kelly, J.A., Kaufman, K.M., et al; BIOLUPUS and GENLES

Networks. (2011). Association of a functional variant downstream of TNFAIP3

with systemic lupus erythematosus. Nat. Genet. 43, 253–258.

66 Cell 147, September 30, 2011 ª2011 Elsevier Inc.

http://dx.doi.org/doi:10.1016/j.cell.2011.09.011


Adzhubei, I.A., Schmidt, S., Peshkin, L., Ramensky, V.E., Gerasimova, A.,

Bork, P., Kondrashov, A.S., and Sunyaev, S.R. (2010). A method and server

for predicting damaging missense mutations. Nat. Methods 7, 248–249.

Alexander, R.P., Fang,G., Rozowsky, J., Snyder,M., andGerstein,M.B. (2010).

Annotating non-coding regions of the genome. Nat. Rev. Genet. 11, 559–571.

Anderson, C.A., Soranzo, N., Zeggini, E., and Barrett, J.C. (2011). Synthetic

associations are unlikely to account for many common disease genome-

wide association signals. PLoS Biol. 9, e1000580.

Balding, D.J. (2006). A tutorial on statistical methods for population associa-

tion studies. Nat. Rev. Genet. 7, 781–791.

Bansal, V., Libiger, O., Torkamani, A., and Schork, N.J. (2010). Statistical anal-

ysis strategies for association studies involving rare variants. Nat. Rev. Genet.

11, 773–785.

Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., Wang, Z., Wei, G.,

Chepelev, I., and Zhao, K. (2007). High-resolution profiling of histone methyl-

ations in the human genome. Cell 129, 823–837.

Bernstein, B.E., Stamatoyannopoulos, J.A., Costello, J.F., Ren, B., Milosavl-

jevic, A., Meissner, A., Kellis, M., Marra, M.A., Beaudet, A.L., Ecker, J.R.,

et al. (2010). The NIH Roadmap Epigenomics Mapping Consortium. Nat.

Biotechnol. 28, 1045–1048.

Beroukhim, R., Mermel, C.H., Porter, D., Wei, G., Raychaudhuri, S., Donovan,

J., Barretina, J., Boehm, J.S., Dobson, J., Urashima,M., et al. (2010). The land-

scape of somatic copy-number alteration across human cancers. Nature 463,

899–905.

Bhangale, T.R., Rieder, M.J., and Nickerson, D.A. (2008). Estimating coverage

and power for genetic association studies using near-complete variation data.

Nat. Genet. 40, 841–843.

Birney, E., Stamatoyannopoulos, J.A., Dutta, A., Guigó, R., Gingeras, T.R.,
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field, N.C., Gräf, S., Huss, M., Keefe, D., et al. (2011). Open chromatin defined

by DNaseI and FAIRE identifies regulatory elements that shape cell-type iden-

tity. Genome Res. Published online August 19, 2011. 10.1101/gr.121541.111.

Stranger, B.E., Nica, A.C., Forrest, M.S., Dimas, A., Bird, C.P., Beazley, C.,

Ingle, C.E., Dunning, M., Flicek, P., Koller, D., et al. (2007). Population geno-

mics of human gene expression. Nat. Genet. 39, 1217–1224.

Teslovich, T.M., Musunuru, K., Smith, A.V., Edmondson, A.C., Stylianou, I.M.,

Koseki, M., Pirruccello, J.P., Ripatti, S., Chasman, D.I., Willer, C.J., et al.

(2010). Biological, clinical and population relevance of 95 loci for blood lipids.

Nature 466, 707–713.

Thorgeirsson, T.E., Geller, F., Sulem, P., Rafnar, T., Wiste, A., Magnusson,

K.P., Manolescu, A., Thorleifsson, G., Stefansson, H., Ingason, A., et al.

(2008). A variant associated with nicotine dependence, lung cancer and

peripheral arterial disease. Nature 452, 638–642.

Voight, B.F., Scott, L.J., Steinthorsdottir, V., Morris, A.P., Dina, C.,Welch, R.P.,

Zeggini, E., Huth, C., Aulchenko, Y.S., Thorleifsson, G., et al; MAGIC investiga-

tors; GIANT Consortium. (2010). Twelve type 2 diabetes susceptibility loci

identified through large-scale association analysis. Nat. Genet. 42, 579–589.

Walsh, T., McClellan, J.M., McCarthy, S.E., Addington, A.M., Pierce, S.B.,

Cooper, G.M., Nord, A.S., Kusenda, M., Malhotra, D., Bhandari, A., et al.

(2008). Rare structural variants disrupt multiple genes in neurodevelopmental

pathways in schizophrenia. Science 320, 539–543.

Wang, Z., Zang, C., Rosenfeld, J.A., Schones, D.E., Barski, A., Cuddapah, S.,

Cui, K., Roh, T.Y., Peng, W., Zhang, M.Q., and Zhao, K. (2008). Combinatorial

patterns of histone acetylations and methylations in the human genome. Nat.

Genet. 40, 897–903.

Yang, J., Benyamin, B.,McEvoy, B.P., Gordon, S., Henders, A.K., Nyholt, D.R.,

Madden, P.A., Heath, A.C., Martin, N.G., Montgomery, G.W., et al. (2010).

Common SNPs explain a large proportion of the heritability for human height.

Nat. Genet. 42, 565–569.

Cell 147, September 30, 2011 ª2011 Elsevier Inc. 69


	 Mapping Rare and Common Causal Alleles for Complex Human Diseases
	 Population Genetics of Rare and Common Alleles
	 The Origin of Polymorphic Alleles
	 Linkage Disequilibrium and Haplotypes
	 Finding Pathogenic Variants, Both Rare and Common
	 Functional Properties of Pathogenic Variants, Both Rare and Common

	 Common Variants
	 Detecting Common Variants with High-Throughput SNP Arrays
	 Selecting Populations for Study
	 Genome-wide Association Studies
	 Fine-Mapping Common Variant Loci

	 Rare Variants
	 Identifying Rare Variants with High-Throughput Sequencing
	 Power Considerations and Significance Testing
	 Burden Testing
	 Structural Variants
	 Extended Haplotypes

	 From Variants to Function
	 Evaluating Nonsynonymous Coding Variants
	 Evaluating Noncoding Variants
	 Sequence Conservation
	 eQTL Data Can Suggest Causal Genes and Mechanism
	 Chromatin Modifications
	 Identifying Causal Processes with Integrative Analyses

	 Conclusions
	 Supplemental Information
	 Acknowledgments
	 References


