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Rare, Low-Frequency, and Common Variants in the
Protein-Coding Sequence of Biological Candidate Genes
from GWASs Contribute to Risk of Rheumatoid Arthritis

Dorothée Diogo,1,2,3,19 Fina Kurreeman,1,2,3,13,19 Eli A. Stahl,1,2,3 Katherine P. Liao,1 Namrata Gupta,4

Jeffrey D. Greenberg,5 Manuel A. Rivas,3 Brendan Hickey,1 Jason Flannick,3,6 Brian Thomson,3

Candace Guiducci,3 Stephan Ripke,3,7,8 Ivan Adzhubey,2 Anne Barton,9 Joel M. Kremer,10

Lars Alfredsson,11 Consortium of Rheumatology Researchers of North America, Rheumatoid Arthritis
Consortium International, Shamil Sunyaev,2,3 Javier Martin,12 Alexandra Zhernakova,13,14 John Bowes,9

Steve Eyre,9 Katherine A. Siminovitch,15,16 Peter K. Gregersen,17 Jane Worthington,9 Lars Klareskog,18

Leonid Padyukov,18 Soumya Raychaudhuri,1,2,3,9 and Robert M. Plenge1,2,3,*

The extent to which variants in the protein-coding sequence of genes contribute to risk of rheumatoid arthritis (RA) is unknown.

In this study, we addressed this issue by deep exon sequencing and large-scale genotyping of 25 biological candidate genes located

within RA risk loci discovered by genome-wide association studies (GWASs). First, we assessed the contribution of rare coding

variants in the 25 genes to the risk of RA in a pooled sequencing study of 500 RA cases and 650 controls of European ancestry.

We observed an accumulation of rare nonsynonymous variants exclusive to RA cases in IL2RA and IL2RB (burden test: p ¼ 0.007

and p ¼ 0.018, respectively). Next, we assessed the aggregate contribution of low-frequency and common coding variants to the

risk of RA by dense genotyping of the 25 gene loci in 10,609 RA cases and 35,605 controls. We observed a strong enrichment of

coding variants with a nominal signal of association with RA (p < 0.05) after adjusting for the best signal of association at the loci

(penrichment ¼ 6.4 3 10�4). For one locus containing CD2, we found that a missense variant, rs699738 (c.798C>A [p.His266Gln]),

and a noncoding variant, rs624988, reside on distinct haplotypes and independently contribute to the risk of RA (p ¼ 4.6 3 10�6).

Overall, our results indicate that variants (distributed across the allele-frequency spectrum) within the protein-coding portion

of a subset of biological candidate genes identified by GWASs contribute to the risk of RA. Further, we have demonstrated that

very large sample sizes will be required for comprehensively identifying the independent alleles contributing to the missing

heritability of RA.
Introduction

Genome-wide association studies (GWASs) have success-

fully identified many loci that influence a wide variety

of complex diseases. However, a large portion of the herita-

bility of complex traits has not been explained by GWASs.1

Several hypotheses have been proposed to explain the

missing heritability from association studies. One hypoth-

esis involves rare and low-frequency variants, which are

not well captured by current genotyping arrays. These

variants are expected to be under purifying selection and

thus enriched with deleterious, protein-coding mutations

participating in complex traits.2,3 Another hypothesis to

explain the missing heritability involves common variants
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with small effect sizes; these variants do not reach genome-

wide significance thresholds in GWASs.

Methods have been developed for the assessment of the

genetic architecture of complex traits with the use of

GWAS data.4,5 In a recent study,6 we used polygenic

models to demonstrate that common variants with weak

effect sizes account for a large portion of the missing

genetic contribution to diseases. Furthermore, we conduct-

ed Bayesian inference analyses and found that a portion of

the underlying risk is contributed by low-frequency and

rare causal variants and that these variants have modest

effect sizes (odds ratios [ORs] < 1.5). Our simulations sug-

gested that at least some disease risk loci harbor multiple

independent risk alleles and that both common variants
’s Hospital, Harvard Medical School, Boston, MA 02115, USA; 2Division of

A 02115, USA; 3Medical and Population Genetics Program, Broad Institute,

ge, MA 02142, USA; 5New York University Hospital for Joint Diseases, New

ssachusetts General Hospital, Boston, MA 02114, USA; 7Analytic and Trans-

School, Boston, MA 02114, USA; 8Stanley Center for Psychiatric Research,

Research UK Epidemiology Unit, University of Manchester, Manchester

of Rheumatology, Albany, NY 12206, USA; 11Institute of Environmental
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and independent low-frequency or rare causal variants

contribute to disease risk.

Investigating independent risk alleles affecting protein-

coding regions in associated loci appears to be a good

strategy for identifying genes of biological relevance in

complex traits. Indeed, several examples in the literature

show that genes containing common variants associated

with complex traits also contain rare and low-frequency

protein-coding variants; such genes include PCSK9 (MIM

607786; associated with low-density-lipoprotein choles-

terol levels),7 IFIH1 (MIM 606951; associated with type 1

diabetes),8 genes associated with hypertriglyceridemia9 or

inflammatory bowel disease,10,11 CFH (MIM 134370; asso-

ciated with age-related macular degeneration),12 MTNR1B

(MIM 600804; associated with type 2 diabetes),13 SHANK2

(MIM 603290; associated with autism spectrum disor-

ders),14 and CARD14 (MIM 607211; associated with

psoriasis).15

Here, we aimed to further assess the role of rare, low-

frequency, and common variants with weak effects on

the genetic architecture of rheumatoid arthritis (RA [MIM

180300]). We focused on variants within protein-coding

regions (e.g., missense, nonsense, and synonymous vari-

ants) because it is more straightforward to annotate biolog-

ical function and because independent protein-coding

variants can help pinpoint causative genes. Our findings

support our simulated genetic models and provide strong

evidence that rare, low-frequency, and common variants

within protein-coding sequences of biological candidate

genes from GWASs contribute to the risk of RA.
Subjects and Methods

Samples
Our sequencing study included 500 RA cases and 650 matched

controls of European ancestry. RA cases were selected on the basis

of a high titer of anticitrullinated protein antibodies (ACPAs),

markers of disease severity.16 These samples originated from two

different collections. A total of 250 RA cases and 250 controls

were recruited from Sweden as part of the Epidemiological Inves-

tigation of Rheumatoid Arthritis.17 The remaining 250 cases and

400 controls were recruited from the United States as part of

a study using electronic medical records.18 Blood samples were

collected according to protocols approved by local institutional

review boards. All individuals provided informed consent.
Exon Sequencing
We targeted 25 biological candidate genes in RA-associated loci by

using GRAIL19 for exon resequencing. We combined DNA in 10

pools of RA cases and 13 pools of matched controls, and each

pool contained the same amount of DNA from 50 individuals.

We matched case and control samples in pools for sequencing

by first calculating principal-component (PC) distances between

all pairs of samples as Euclidean distances along five eigenvalue-

weighted PCs (calculated from GWAS data). We matched one

control sample to each case by randomly choosing from nearby

controls (probability was inversely proportional to PC distance)

and minimizing the total case-control PC distance over 100 itera-
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tions, and we excluded outliers from the distribution of case-

control PC distances. We then established case pools by randomly

choosing pools from nearby cases and minimizing total within-

pool PC distance over 1,000 iterations, and matched controls

constituted matching control pools. For each pool, we performed

PCR amplification to capture the target sequence. We then

combined all PCR amplicons (~125 bp per amplicon) in equimolar

concentrations. Each pool was paired-end sequenced at the Broad

Institute on one lane of the Illumina Genome Analyzer II. Reads of

125 bp were aligned to the reference human genome (NCBI Build

36/hg18) with the MAQ algorithm20 within the Picard analysis

pipeline, similar to methods described in other studies.11

We used the method Syzygy to call variants on the pooled

sequencing data.11 We applied several filters to identify high-

quality variants in each pool. First, we considered only the posi-

tions with R2,0003 coverage, i.e., a minimum of 203 coverage

per chromosome. Second, we required concordant allele frequen-

cies on the forward and reverse strands. Third, we considered the

nonrandomness of the noise spectrum of technical artifacts due to

a biased preference for different base signal channels. Fourth, we

filtered out all SNPs that clustered together within a 5 bp window

centered on a SNP. Finally, because we sequenced the 23 pools in

three separate batches, we performed regression analyses to deter-

mine whether significant batch effects existed in our data. After

these stringent filtering criteria, 281 coding variants were called.

We used GWAS data available for 250 RA cases and 250 controls

to assess the quality of the variants called. First, we targeted

18 low-frequency variants that were genotyped with GWAS

arrays and determined whether we were able to detect singletons,

doubletons, tripletons, and all alleles present at a frequencyR 4 in

each pool sequenced. We detected 99% of all singletons and 100%

of all doubletons and tripletons in our sequencing data. Our

approach missed one singleton as a result of low coverage at that

base (nreads ¼ 184). To determine the specificity in our data, we

took advantage of a larger set of SNPs present in both our

sequencing data and our GWAS data (n ¼ 40, genotyped or

imputed). The allele frequencies estimated from read counts corre-

lated strongly with expected frequencies in the GWAS pools

(pearson correlation, R2
cases ¼ 0.990 and R2

controls ¼ 0.999).

We achieved slightly diminished specificity (R2
cases ¼ 0.934

and R2
controls ¼ 0.972) with lower-frequency variants

(frequencysyzygy < 0.05, n ¼ 25; Table S2 and Figure S1, available

online). We used PolyPhen21 to annotate the 281 variants

(missense, nonsense, or synonymous) and predict their impact

on the structure and function of the protein.
Analysis of Burden Association Signal Due to Rare

Variants
To assess the overall genetic burden due to rare variants in the

genes investigated, we used four collapsing methods described in

the literature: (1) the weighted-sum statistic described by Madsen

and Browning,22 (2) the variable-threshold model described by

Price et al.,23 (3) the T1 and T5 models by Morris and Zeggini,24

and (4) the C-alpha test described by Neale et al.25 In this analysis,

we only included variants that were not previously described in

the 1000 Genomes CEU (Utah residents with ancestry from

northern and western Europe from the CEPH collection) panel

(release June 2011) or in dbSNP. For each gene, we separated the

nonsynonymous and synonymous variants. We then pooled the

variants on the basis of their minor allele frequency (MAF) in

controls (MAF < 1% or MAF < 5%) and tested their cumulative
3
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effect by using the four collapsing methods and allele counts in

the pooled data (note: singletons were not included in the C-alpha

test). We repeated the analysis by incorporating PolyPhen predic-

tions in the statistical tests and giving higher weight to variants

predicted to be functionally relevant. We assessed statistical signif-

icance by 100,000 case-control permutations.

Single SNP Analysis Using Genotype Data
To test the low-frequency and common coding variants for associ-

ation with RA, we used two types of genotyping data available in

our laboratory (Table S3). Seven case-control collections were gen-

otyped with the Illumina Immunochip platform as part of the

Rheumatoid Arthritis Consortium International,26 the i2b2

program,18 or the Consortium of Rheumatology Researchers of

North America (CORRONA).27 Four additional case-control collec-

tions from our previous GWAS were included.28

The i2b2 samples were identified with the use of clinical data

from the electronic medical records (EMRs) as previously

described.29 The i2b2 and CORRONA samples were genotyped

together at the Broad Institute. Genotype calling was performed

on all samples as a single project with the GenomeStudio Data

Analysis Software package. Initial genotype clustering was per-

formed with the default Illumina cluster file (Immunochip_

Gentrain_June2010.egt) and manifest file Immuno_BeadChip_

11419691_B.csv. Extensive quality control and data filtering

were performed as described elsewhere,26 and SNPs with p <

10�2 in a chi-square test for difference in missingness between

cases and controls were also removed, leaving 148,972 SNPs

for subsequent analysis. We performed PC analysis by using

EIGENSOFT30 with HapMap phase III samples to exclude individ-

uals of non-European ancestry.

We calculated identity-by-state estimates by using PLINK31 to

remove related samples across the Immunochip and GWAS

collections with the use of a set of SNPs with a missing-genotype

rate < 0.5%, MAF > 5%, and pruned linkage disequilibrium

(LD). The 11 collections resulted in a total sample size of 10,609

RA ACPAþ cases and 35,605 controls of European ancestry. We

applied stringent filters on each Immunochip data set to select

only high-quality SNPs for association testing (call rate > 0.99 in

cases and controls, MAF > 0.1%, Hardy-Weinberg equilibrium

p< 53 10�7, and p> 10�2 in chi-square test for difference inmiss-

ingness between cases and controls). GWAS collections were

imputed with the use of SNPs from the 1000 Genomes CEU

reference panel (release June 2011), and SNPs with bad statistical

information (info score < 0.4) or a MAF < 0.1% were removed

in the subsequent analysis.

To test for association with RA risk, we used PLINK to conduct

logistic-regression analyses of the 11 RA case-control collec-

tions, and this included ten PCs calculated as covariates with

EIGENSOFT.30 After checking genomic-control inflation in each

collection, we conducted an inverse-variance-weighted meta-

analysis to combine the results across the 11 collections at each

of the loci of interest. We also computed Cochran’s Q statistics

and I2 statistics to assess heterogeneity across collections. Meta-

analysis and computation of heterogeneity statistics were adapted

from the MANTEL program.32 At each of the loci analyzed, we

performed a conditional analysis in PLINK to test for an indepen-

dent signal of association by adjusting for the genotypes at the

best signal of association at the locus. When the SNP with the

best signal of association was not present in the 11 collections,

the best proxy (r2 > 0.9) present in the 11 collections was used

in the conditional analysis. We also performed a conditional anal-
The
ysis by adjusting for the coding variants to assess the contribution

of these coding variants to the known GWAS signals.

To assess the enrichment of coding variants with nominal signal

of association in our meta-analysis and conditional analysis (pob-

served < 0.05), we generated 1,000 sets of permuted phenotypes

for each of the 11 collections. For each collection, we performed

1,000 logistic regressions (including ten PCs as covariates) by

using the permuted phenotypes. We then performed 1,000

meta-analyses of the logistic-regression results from the 11

collections. We extracted the p values (ppermutation) for each of

the SNPs with pobserved < 0.05 in our initial meta-analysis or condi-

tional analysis. For several p value thresholds (pthreshold ranging

from 5 3 10�8 to 1), we compared the number of SNPs with

pobserved < pthreshold and ppermutation < pthreshold and assessed the

significance of the results by using Fisher’s exact tests.

To assess the significance of observing coding SNPs in LD

(r2 > 0.7) with the best signals of association at the loci, we

randomly extracted 1,000 SNPs from each of the loci of interest.

We then compared the frequency of randomly extracted SNPs

that showed r2 > 0.7 with the best hit in the conditional analysis

to the observed frequency among coding SNPs with p < 0.05 in

the conditional analysis (Fisher’s exact test).
Independent Signal of Association at CD2
To investigate the independent signal of association at CD2, we

performed a conditional haplotype analysis in PLINK by using

only samples genotyped in the Immunochip (7,222 RA cases

and 15,870 controls) and including PCs as covariates. To assess

the significance of the results controlling for the known common

variant, we permuted case-control status while preserving geno-

types for the common variant (fixing case-control allele frequen-

cies and ORs). In 5,000 permutations, we evaluated the frequency

of observing a signal of association at p% 0.015 when controlling

for the common variant.

To investigate the best causal candidate variant responsible for

this independent signal, we extracted all SNPs that were described

in the 1000 Genomes CEU data (release June 2011) and that were

in strong LD (r2 > 0.8) with rs798036. We annotated the 17

proxies by using PolyPhen,21 SIFT,33 GERP,34 and publically avail-

able data on expression quantitative trait loci (eQTL).
Power Calculations
To assess the number of samples required for reaching significant p

values in our burden tests, we extrapolated our results in IL2RA

and IL2RB, as described previously.35 We used (1) ORs estimated

on the basis of singleton counts in our 500 RA cases and in Euro-

pean American samples as part of the National Heart, Lung, and

Blood Institute (NHLBI) Exome Sequencing Project (ESP) and (2)

ORs estimated on the basis of allele counts for variants with a

MAF < 5% in our RA cases and controls. We calculated burden

p values by using a one-sided Fisher’s exact test.

Power to observe a p < 5 3 10�8 for association at the CD2

common missense variant was assessed with the Genetic Power

Calculator.36
Results

Study Overview

An overview of our study is shown in Figure 1. We

sequenced the coding exons of 25 genes located within
American Journal of Human Genetics 92, 1–13, January 10, 2013 3



Figure 1. Description of the Study Design
Our study used two sources of data: (1) we sequenced the coding exons of 25 genes located within RA risk loci identified by GWASs,
leading to the identification of 281 protein-coding variants (top panel: distribution shown for MAF in controls); and (2) we used inte-
grated Immunochip and GWAS data for 10,609 seropositive RA cases and 35,605 controls and focused only on the protein-coding vari-
ants from these same 25 genes. We performed three types of analyses: (1) To test for association, we investigated burden association
signals driven by an accumulation of rare variants (frequency < 0.5%). (2) We assessed the role of low-frequency (0.5%–5%) and
common (frequency> 5%) variants with weak effect in RA by adjusting for the common SNP identified by GWASs. (3) For detailed anal-
ysis, we selected the CD2 locus, which showed suggestive evidence of an independent signal of association in the conditional analysis.
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RA risk loci identified by GWASs. We focused our analysis

on the best biological candidate genes at each locus

because most RA-associated loci have evidenced connec-

tivity that implicates specific biological pathways.19,37

We investigated the implication of variants previously

not associated with risk of RA in two ways. First, we

investigated burden association signals driven by an accu-

mulation of rare variants (frequency < 0.5%). Second, we

assessed the role of independent low-frequency (0.5%–

5%) and common (frequency > 5%) variants with a weak

effect in RA by adjusting for the known common signals

of association identified by GWASs. To perform this anal-

ysis, we took advantage of a large genotyping data set

including Immunochip and GWAS data. Finally, for

detailed analysis, we selected theCD2 locus, which showed
4 The American Journal of Human Genetics 92, 1–13, January 10, 201
suggestive evidence of an independent signal of associa-

tion in the conditional analysis.

Identification of Coding Variants in Biological

Candidate Genes

We selected 25 biological candidate genes from loci associ-

ated with RA in previous GWASs28,38 by using GRAIL19 and

targeted them for exon sequencing in 500 RA cases sero-

positive for ACPAs and 650 matched controls of European

ancestry. Overall, 86.4% (ranging between 62.6% in

FCGR2A (MIM 146790) and 100% in CCL21 [MIM

602737] and CTLA4 [MIM 123890]) of the 36.8 kb target

regions were sequenced with >203 coverage per chromo-

some in at least 80% of case pools and control pools

(Table 1). The average coverage per position sequenced
3



Table 1. Number of Coding Variants Identified in the Biological Candidate Genes through Exon Sequencing

Gene
Coding-Sequence
Length (bp)

Percentage
Covereda

Number of Variants

Total

Nonsynonymous Synonymous

All Testedb All Testedb

BLK 1,515 78.3% 17 11 8 6 3

CCL21 372 100.0% 2 1 1 1 0

CCR6 1,122 97.9% 9 3 1 6 3

CD2 1,053 92.9% 9 8 5 1 1

CD28 660 77.3% 4 2 2 2 0

CD40 831 84.7% 4 2 1 2 1

CD58 750 80.3% 6 4 3 2 1

CTLA4 669 100.0% 2 2 1 0 0

FCGR2A 951 62.6% 7 3 2 4 2

IL2 459 86.9% 1 0 0 1 0

IL21 486 78.4% 2 0 0 2 1

IL2RA 816 92.2% 11 7 4 4 2

IL2RB 1,653 91.9% 13 9 6 4 3

IRF5 1,494 85.5% 7 4 4 3 1

PRDM1 2,475 85.9% 21 13 6 8 5

PRKCQ 2,118 97.5% 23 11 8 12 8

PTPN22 2,421 86.8% 19 14 9 5 4

PTPRC 3,912 84.6% 37 21 16 16 10

REL 1,857 77.2% 5 2 2 3 2

STAT4 2,244 91.0% 8 4 2 4 3

TAGAP 2,193 78.6% 16 10 7 6 4

TNFAIP3 2,370 97.2% 14 10 8 4 2

TNFRSF14 849 80.4% 11 6 3 5 2

TRAF1 1,248 86.1% 19 10 7 9 6

TRAF6 1,566 81.9% 14 10 10 4 4

Total 36,084 86.4% 281 167 116 114 68

aPercentage of coding sites sequenced with >203 coverage per chromosome in at least 80% of case pools and control pools.
bVariants absent from dbSNP and the 1000 Genomes Project (release June 2011) and included in the collapsing tests and burden tests.
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and per pool was 90,7003, i.e., 9073 coverage per position

per chromosome.

We used the calling variant method Syzygy11 and identi-

fied 281 high-quality coding variants, i.e., one variant

every 128 bp (Table 1 and Table S1). Using GWAS data

available for 250 case-control pairs included in our

sequencing study, we found high sensitivity and specificity

of our sequencing results (Table S2 and Figure S1). The

transition-to-transversion ratio based on the 281 SNPs

was 3.6, consistent with previously published ratios from

exon-sequencing data.3

Out of the 281 variants, 232 (83%) had a MAF less than

1% in controls, and as expected, only 97 (35%) were previ-

ously described in the 1000 Genomes Project or dbSNP,

showing that most of the variants identified here are
The
both rare and previously uncharacterized. The 281 variants

included 114 synonymous, 164 missense, and 3 nonsense

variants. We used PolyPhen21 to predict the function of

the missense variants. A total of 32 (20%) and 43 (26%)

variants were predicted to be potentially damaging

and probably damaging, respectively (Table S1). Among

the synonymous variants, 26 (23%) had a conservation

score > 2 as determined by GERP,34 giving some evidence

of evolutionary constrained sites (Table S1).

Accumulation of Nonsynonymous Rare Variants in

IL2RA and IL2RB in Individuals with RA

To assess association at rare variants, we used four

collapsing (or burden) methods described in the literature.

The weighted-sum statistic,22 the variable-threshold
American Journal of Human Genetics 92, 1–13, January 10, 2013 5



Figure 2. Accumulation of Coding Rare Variants in IL2RA and IL2RB
(A) Burden association signal driven by nonsynonymous variants. Two types of tests were performed: unweighted (UW) tests and tests
weighted (W) with PolyPhen scores. For these two genes, we did not obtain any result by using the C-alpha method because it did not
include singletons.
(B) Accumulation of rare variants exclusive to RA cases in IL2RA and IL2RB.
(C and D) Distribution of variants across IL2RA and IL2RB. Missense, nonsense, and synonymous variants are shown in red, brown, and
green, respectively. For the missense variants, PolyPhen prediction is indicated (B, benign; d, potentially damaging; and D, probably
damaging). Variants included in the collapsing tests and burden tests (i.e., variants not described in the 1000 Genomes Project or in
dbSNP) are highlighted with a star.
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model,23 and the T1 and T5 models24 assume that the

effects of the combined variants on the phenotype are in

the same direction, whereas the C-alpha test25 allows

detection of opposite effects. For our primary analysis, we

restricted the burden tests to variants not described in

dbSNP or the 1000 Genomes Project (release June 2011)

under the hypothesis that truly private mutations are

more likely to be pathogenic. We tested groups of nonsy-

nonymous (n ¼ 116) and synonymous (n ¼ 68) variants

separately; for the nonsynonymous variants, we per-

formed both unweighted tests and tests incorporating

PolyPhen predictions of the functional effect of the vari-

ants in the statistical tests such that higher weight was

attributed to variants predicted to have functional impact.

In a second analysis, we performed gene burden tests by

using all nonsynonymous variants identified, weighted,

and unweighted with PolyPhen prediction scores.

Two genes, IL2RA (MIM 147730) and IL2RB (MIM

146710), showed nominal burden signal of association (p

< 0.05) driven by two or more nonsynonymous variants

(Figure 2A). In IL2RA and IL2RB, four and six nonsynony-

mous variants, respectively, were included in the tests. In

IL2RA, incorporating PolyPhen prediction did not affect

the burden signal observed, whereas IL2RB variants pre-

dicted to be potentially or probably damaging did influ-
6 The American Journal of Human Genetics 92, 1–13, January 10, 201
ence the genetic-burden signal (Figure 2A). The same

results were observed when we included all nonsynony-

mous variants in the tests; the only exception was

PTPN22 (MIM 600716), which only reached p < 0.05

when we included the known RA-risk missense variant

rs2476601 (data not shown).

The burden signal at IL2RA and IL2RB corresponded to

an accumulation of nonsynonymous rare variants, mainly

singletons, exclusively identified in cases (Figures 2B–2D).

The burden signal of association at these two genes could

not be attributed to a bias in the sequencing coverage

between case and control pools given that all ten variants

included in the IL2R burden tests showed >50,0003

coverage in each pool (i.e > 5003 coverage per chromo-

some per pool). The distribution of the variants across

the genes highlighted that eight out of the nine cases-

exclusive nonsynonymous variants in IL2RA and IL2RB

lie within the extracellular-domain-coding regions (Figures

2C and 2D).

We further assessed the frequency of singleton missense

SNPs in IL2RA and IL2RB among 4,300 individuals of Euro-

pean ancestry from the NHLBI ESP. None of the singleton

variants in IL2RA and IL2RB were present in the ESP data

(four IL2RA and four IL2RB singleton variants in RA

cases). Among ESP samples, only six missense singletons
3
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(12 missense SNPs with a MAF < 5%) were identified

in IL2RA and 12 missense singletons (22 missense

SNPs with a MAF < 5%) were identified in IL2RB. Using

our sequencing results from RA samples (n ¼ 500 RA

cases) and the ESP data as controls (n ¼ 4,300 controls)

in one-sided Fisher’s exact tests incorporating single-

tons, we observed the following ORs: IL2RA, OR ¼ 5.75

(p ¼ 0.02); and IL2RB, OR ¼ 2.9 (p ¼ 0.08). These

results are consistent with the observed effect sizes from

our sequencing results in IL2RB (OR ¼ 3.0), providing

supporting evidence that missense mutations in these

two genes contribute to risk of RA. (We could not deter-

mine the OR in IL2RA on the basis of our sequencing

results because no rare missense variant was identified in

our controls).

Enrichment of Signals of Association at Coding

Variants

The genetic-burden tests described above do not test the

role of single variants whether the variants are of low

frequency (0.1%–5%) or common (>5%) in the general

population. To extend our sequencing study to indepen-

dent modest-effect variants that are sufficiently frequent

to be cataloged and genotyped with current arrays, we

took advantage of two large RA case-control genotyping

data sets: (1) 8,246 RA cases and 17,741 controls of Euro-

pean ancestry from seven collections and genotyped at

high density across autoimmune-disease-related loci with

the Illumina Immunochip (iChip) platform26 (and unpub-

lished data) and (2) a GWAS data set including 2,363 RA

cases and 17,872 controls of European ancestry from four

collections28 (Table S3). The iChip data described here

include a new set of 1,024 RA cases and 1,863 controls

not previously analyzed. Also, our GWAS data set reported

here was imputed genome-wide with haplotype-phased

1000 Genomes CEU data as a reference panel for the

improvement of coverage of low-frequency variants.

We first assessed the coverage of variants discovered by

sequencing in the iChip and GWAS data sets. By exam-

ining good proxies of the sequencing variants (r2 > 0.8,

as determined with the 1000 Genomes CEU data), we

found that 42 out of 60 SNPs observed with a MAF >

0.5% in controls in our sequencing study were tagged in

our quality-filtered genotyping data set. In contrast, 5 out

of 211 SNPs with a MAF < 0.5% in controls were tagged

in the genotyping data set (Figure 1). We focused on this

set of 47 SNPs for association testing in our combined

sample set of 10,609 RA ACPAþ cases and 35,605 controls.

Of the 47 coding variants, 23 were nonsynonymous vari-

ants and 24 were synonymous variants.

To test these 47 coding variants for association with RA

risk, we performed a meta-analysis of all data combined

and compared the association p values with meta-analysis

results after 1,000 case-controls permutations of the 11

data sets. After excluding variants in LD with each other

(r2 > 0.4), we observed 16 (37%) of the 43 independent

variants with p < 0.05 for association with RA, whereas
The
three were expected by chance alone (penrichment ¼ 1.4 3

10�8) (Table S4). The signal appeared to be driven by

both nonsynonymous variants (9/22 variants with p <

0.05; penrichment ¼ 8.5 3 10�4) and synonymous variants

(7/21 variants with p < 0.05; penrichment ¼ 5.9 3 10�4).

Conditional Analysis on Established, Common RA

Risk Alleles

To assess whether the signal observed at coding variants

was driven by the established common RA risk allele, we

first evaluated the LD between the 16 associated

coding variants and the known GWAS signals (Table S4).

Three of the 16 coding variants were in strong LD with

the known GWAS SNPs (r2 > 0.8), including the

well-known causal missense variant rs2476601 in

PTPN22.39–42 An additional four coding variants were in

moderate LD with the known GWAS SNP (2/16 variants

with r2 ¼ 0.4–0.8 and 2/16 variants with r2 ¼ 0.1–0.4),

and the other nine coding variants had an r2 < 0.05 with

the GWAS SNP.

To account for the known GWAS signal, we performed

conditional analyses adjusting for the best hit identified

in the meta-analysis at each locus. After conditional anal-

ysis, we identified 10 of 43 (23%) coding variants showing

p < 0.05 for association with RA risk; this was more than

expected by chance alone (penrichment ¼ 6.4 3 10�4). This

signal was driven by both nonsynonymous (6/22 variants;

penrichment ¼ 8.7 3 10�3) and synonymous variants (4/21

variants; penrichment ¼ 0.025) (Figure 3 and Table 2). One

of the coding variants with p < 0.05 is TNFAIP3 (MIM

191163), and a proxy of this nonsynonymous variant (r2

¼ 0.62) has been previously implicated as an RA risk

allele.43 After removing this coding TNFAIP3 variant, we

still observed evidence of enrichment (penrichment ¼ 2 3

10�3; Figure S2).

Although these observations strongly suggest that some

of the coding variants analyzed here are true risk alleles for

RA independent of the known RA risk alleles, no single

variant survived a stringent correction for multiple

hypotheses testing given the number of SNPs tested across

each locus. However, we did observe that five out of the ten

coding variants with pcondition < 0.05 were in LD (r2 > 0.7)

with the best hit in the conditional analysis (penrichment ¼
1.73 10�3); the five remaining variants had r2 < 0.05 with

the best hit (Table 2). That is, if the coding variants had no

effect on risk of RA (i.e., spurious association), it is unlikely

that the coding variants would be in high LD with the

second strongest signal of association after conditioning

on the known GWAS signal.

We also performed a conditional analysis adjusting for

the coding variants and compared the association signal

at the known GWAS hit in the meta-analysis and the

conditional analysis (Table S5). As indicated by the consis-

tent ORs in both analyses, the ten coding variants showing

p < 0.05 when we adjusted for the known GWAS risk

alleles did not contribute to the known GWAS signals of

association.
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Figure 3. Enrichment of Nominal Association Signal Driven byNonsynonymous and Synonymous Variants in the Conditional Analysis
The numbers of nonsynonymous variants (A) and synonymous variants (B) reaching the p < p threshold in our conditional analysis
or after 1,000 permutations of the phenotypes are shown. Significant enrichment of SNPs with the p < p threshold in our conditional
analysis was assessed by a Fisher’s exact test (*p < 0.05 and **p < 0.01).
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Together, these data argue for a model in which at least

some RA risk loci harbor additional yet-unidentified low-

frequency or common risk alleles with a modest effect

size (OR z 1.2; Table 2). Importantly, these yet-undiscov-

ered independent association signals are most likely driven

by variants within the protein-coding sequence of genes.

Our results suggest that not only nonsynonymous but

also synonymous variants play a role in these independent

signals of association.

Independent Signal of Association at CD2

Most of the ten candidate coding variants identified above

showed either a small effect size or a low frequency, which

did not allow us to perform detailed follow-up analyses

with enough power considering the sample size of our

genotyping data set. However, one common missense

variant in CD2 (MIM 186990), rs699738 (c.798C>A

[p.His266Gln]), showed a pcondition ¼ 0.0017 and was in

complete LD (r2 ¼ 1) with the best signal of association

in the conditional analysis (MAF ¼ 0.09 and ORcondition ¼
0.88). We thus performed more detailed haplotype and

conditional analyses at the CD2 locus. Our meta-analysis

and conditional analysis provided suggestive statistical

evidence of association at both a common noncoding

variant (rs624988 [MAF ¼ 0.4]) and the independent

missense variant rs699738 (Table 2 and Figures 4A and

4B). Although rs699738 was not directly analyzed in our

meta-analysis, we identified proxy SNPs that were in

complete LD (r2 ¼ 1) and that were included in our meta-

analysis (these were rs798036, rs798037, rs798044, and

rs810048). As shown in Figure 4C, these proxy SNPs

showed consistent effect sizes among the 11 data sets and

thus association with RA risk in the meta-analysis. After

adjusting for both rs624988 and rs798036 in a conditional

analysis, we observed no signal at p < 0.01 (Figure S3).

In a haplotype analysis using iChip data (Figure 4D), we

observed that the perfect proxy of the missense variant
8 The American Journal of Human Genetics 92, 1–13, January 10, 201
(rs798036) was independent of the common variant

driving the best signal of association at the locus

(rs624988). For the three common haplotypes formed by

these two CD2 variants, there was a dose-dependent effect

on risk of RA on the basis of point estimates: the A-T haplo-

type with both risk alleles had a higher susceptibility

(OR¼ 1.22) than did the G-A haplotype with both nonrisk

alleles, whereas the G-T haplotype carrying the CD2

missense variant alone demonstrated an intermediate

effect (OR ¼ 1.14). (The A-A haplotype carrying the non-

coding risk variant alone was infrequent [1.6%] in the

general population and had anOR of 1.45 and a 95% confi-

dence interval of 1.13–1.85). Consistent with Figure 4B, we

observed a significant association for the G-A haplotype

carrying the CD2missense variant risk allele when control-

ling for the noncoding variant rs624988 (p ¼ 0.015). We

further assessed the significance of this result by perform-

ing 5,000 case-control permutations while preserving

genotypes for the common variant (fixing case-control

allele frequencies and ORs) and found that the observation

of a signal of association at p % 0.015 after controlling for

the effect of rs624988 is beyond what might be expected

by chance alone (p ¼ 0.014). Considering both variants

and all haplotypes combined, we observed a highly signif-

icant (p ¼ 4.6 3 10�6) association between the CD2 locus

and risk of RA.

Although the CD2 missense variant represents a strong

candidate for one of the causal alleles at the CD2 locus,

we considered the possibility that a noncoding variant

could also be responsible for the independent signal at

CD2. We identified 16 SNPs in strong LD (r2 > 0.8) with

missense variant rs699738. These SNPs included nine

intronic variants and seven variants in the 30 region of

the coding sequence. We used several publically available

tools and data sets to annotate the missense variant

(rs699738) and the 16 noncoding variants (Table S6): (1)

PolyPhen21 and SIFT33 to predict the function of the
3



Table 2. Coding Variants Showing Nominal Signal of Association in the Conditional Analysis

Gene

Coding Variant Best Hitcondition
a

Reference
SNP ID MAF ORmeta (95% CI) pmeta pcondition

Reference
SNP ID pcondition r2b

Missense Variants

TNFAIP3 rs2230926 0.038 1.38 (1.30–1.46) 6.8 3 10�14 1.4 3 10�9 rs58721818 3.3 3 10�10 0.87

FCGR2A rs1801274 0.494 1.10 (1.08–1.12) 2.4 3 10�7 5 3 10�4 index 5 3 10�4 1

CD2 rs699738c 0.086 0.88 (0.82–0.94) 1.2 3 10�4 0.0017 index 0.0017 1

TNFRSF14 rs2234163c 0.006 1.52 (1.28–1.76) 7.6 3 10�4 0.0019 rs1886731 8 3 10�4 ~0

BLK rs55758736 0.012 0.79 (0.61–0.97) 0.01 0.0077 rs77072957 1 3 10�4 ~0

TAGAP rs41267765 0.029 1.18 (1.08–1.20) 0.0018 0.0107 rs112904761 0.0017 0.76

Synonymous Variants

IL2RA rs2228150 0.03 1.25 (1.15–1.35) 6.6 3 10�6 6 3 10�4 rs11256360 5 3 10�4 0.88

IL2RB rs228953 0.44 0.95 (0.93–0.97) 0.0023 0.0042 rs5756391 4 3 10�4 ~0

CD58 rs35768283 0.02 1.20 (1.08–1.32) 0.0043 0.0117 rs798036 0.0017 ~0

TRAF1 rs3747841c 0.013 0.89 (0.72–1.07) 0.17 0.03 rs76418192 0.0037 ~0

The following abbreviations are used: MAF, minor allele frequency; OR, odds ratio; and CI, confidence interval.
aBest signal of association in the conditional analysis.
bLD between the coding variant and the best signal of association. Boldface indicates r2 > 0.7.
cCoding variants represented by a proxy in complete LD in the meta-analysis.
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missense variant, (2) GERP34 to identify evolutionary con-

strained sites, and (3) eQTL data in human CD4þ T cells

and monocytes.44,45 Missense variant rs699738 induces

the substitution of a histidine for a glutamine at position

266 of CD2 (p.His266Gln) but was predicted to be benign

by both PolyPhen and SIFT. None of the 17 noncoding

variants showed a high conservation score in mammals,

and we found no evidence that these SNPs are associated

with CD2 expression as eQTLs. All together, we found no

evidence to support a noncoding variant as being poten-

tially damaging.

Discussion

The extent to which variants across the allele-frequency

spectrum contribute to complex traits such as risk of RA

and the actual contribution of variants within protein-

coding sequences are two important issues in human

genetics. In this study, we addressed these two questions

by deep exon-sequencing and large-scale genotyping

across 25 genes from RA risk loci discovered by GWASs.

Our findings support a model in which most GWAS find-

ings in RA are due to common variants that fall outside

of the protein-coding sequences of genes. More impor-

tantly, however, we provide evidence of independent asso-

ciation signals driven by coding variants within a subset of

biological candidate genes identified by GWASs and show

that rare, low-frequency, and common variants with

a small to moderate effect size participate in the missing

genetic contribution to RA.

There are several important implications of our study.

First, we assessed the contribution of coding variants to
The
risk of RA. Although most of the candidate genes that we

sequenced did not have evidence of rare protein-coding

mutations contributing to risk of RA, we did find that, in

RA cases, two genes (IL2RA and IL2RB) harbor an accumu-

lation of rare missense variants that result in a moderate

burden signal of association (p ¼ 0.007 and p ¼ 0.018,

respectively; Figure 2). Further, by testing the aggregate

signal of association at variants that have a MAF > 0.1%

and that lie within protein-coding sequences from a subset

of biological candidate genes, we have demonstrated

a significant enrichment of coding variants with p < 0.05

(penrichment ¼ 6.4 3 10�4; Table 2 and Figure 3) and have

shown that these associated coding variants are observed

in LD (r2 > 0.7) with the second best hit at the loci more

frequently than would be expected by chance alone

(penrichment ¼ 1.7 3 10�3). Although this analysis cannot

definitively confirm which coding variants are causative,

our study does suggest that many will ultimately contri-

bute to risk of RA. To illustrate these findings, we provide

further evidence that one of these associated coding vari-

ants, altering the sequence of CD2, is independent of the

common noncoding variant driving the best signal of asso-

ciation at the locus, and we have shown that these two

variants form three common haplotypes conferring risk

of RA in a dose-dependent manner (Figure 4).

A second implication involves protein-codingmutations

to help identify the disease-causative genes at GWAS loci,

which in turn provides insight into disease biology.

As discussed above, this study identified three genes

carrying missense variants associated with risk of RA:

IL2RA, IL2RB, and CD2. IL2RA encodes IL-2Ra (CD25),

and IL2RB encodes IL-2Rb (CD122); all together, CD25,
American Journal of Human Genetics 92, 1–13, January 10, 2013 9



Figure 4. Evidence of an Independent Signal of Association at the CD2 Locus
(A and B) Association results from the meta-analysis (A) and the conditional analysis (B). In these analyses, missense SNP rs699738 is
represented by a group of SNPs, including rs798036 (highlighted in blue), in perfect LD (r2 ¼ 1). In each analysis, the best signal of
association is indicated by a diamond. Only SNPs present in more than five collections are shown.
(C) ORs and 95% confidence interval in the independent cohorts and the meta-analysis.
(D) Results from the haplotype analysis using the best signal in the meta-analysis (rs624988) and rs798036. In this analysis, only geno-
type data were used (7,222 RA cases and 15,870 controls). With this subset of samples, rs624988 and rs798036 reached p ¼ 1.3 3 10�5

and p ¼ 2 3 10�3 in the meta-analysis, respectively. The overall CD2 variation due to rs624988 and rs798036 contributed to RA with
p ¼ 4 3 10�6. The RA risk allele is highlighted in red.

Please cite this article in press as: Diogo et al., Rare, Low-Frequency, and Common Variants in the Protein-Coding Sequence of Biological
Candidate Genes from..., The American Journal of Human Genetics (2013), http://dx.doi.org/10.1016/j.ajhg.2012.11.012
CD122, and the common gamma chain, CD132, consti-

tute the three subunits of the high-affinity IL-2 receptor

(IL2R).46 Studies have reported that the inactivation of

either CD25 or CD122 in mice results in lethal autoimmu-

nity.47,48 Furthermore, a risk allele in IL2RA has been

linked with a decreased function of T regulatory (Treg) cells

in type 1 diabetes.49,50 CD2 encodes a cell-surface antigen

expressed on T cells. CD2 coactivation has been shown to

induce the suppression of T cell proliferation by activation

of CD4þ CD25hi Treg cells.51,52 Interestingly, several

reports have shown that Treg cells, which control proin-

flammatory responses, are functionally compromised in

individuals with RA.53–55 Further validation and func-

tional analyses will be needed for supporting this observa-

tion and for assessing whether the protein-coding variants
10 The American Journal of Human Genetics 92, 1–13, January 10, 20
within these three genes affect the IL-2-signaling pathway,

the differentiation or activity of Treg cells, or other disease-

related processes to be determined.

A third implication addresses the allele-frequency spec-

trum and effect size of the variants participating in the

risk of RA. We have previously used simulations to show

that rare, low-frequency, and common variants of small

to modest effects participate in the missing genetic

contribution to RA.6 Here, we provide data to empirically

support this model. First, the moderate burden signals of

association at IL2RA and IL2RB implicate rare variants as

participating in the risk of disease. Second, the significant

enrichment of independent coding variants associated

with RA highlights low-frequency and common variants

with a modest effect size (OR z 1.2; Table 2) and shows
13
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that these signals of association are independent of the

known RA risk signals identified by GWASs (Table 2 and

Table S5). Importantly, these conclusions are based on

a small subset of candidate genes selected for sequencing.

A more comprehensive approach to genome sequencing

in RA will be required for assessing whether these findings

can be extrapolated to the remainder of the genome. Ulti-

mately, sequence data on the entire genome in large

sample collections will be required for understanding the

complete genetic architecture of RA risk.

A fourth implication pertains to the design and interpre-

tation of future large-scale sequencing and genotyping

studies in RA, as well as potentially other complex traits.

Our results strongly suggest that genes implicated by

GWASs serve as excellent candidates for future sequencing

studies. For example, itmight be informative to use compu-

tational methods such as GRAIL to prioritize genes for

sequencingor even the interpretationof results that emerge

from whole-genome-sequencing studies. Our results also

underscore the importance of conditional analysis for ad-

justing for the best signal of association in the GWAS

region. Lastly, our study emphasizes the need for very large

sample sizes for teasing apart independent signals (Figures

S4 and S5). For rare variants, we estimate that a sample

size of at least 3,300 RA cases and 3,300 controls would be

required for reaching a significant threshold of 2.5 3 10�6

(which corresponds to p ¼ 0.05 corrected for 20,000 inde-

pendent tests or genes) given the effect size observed for

IL2RA, whereas >5,500 RA cases and 5,500 controls would

be required for reaching p¼ 2.53 10�6 at IL2RB (Figure S4).

Our findings are consistent with the published literature on

genetic-burden tests for rare variants; no candidate-gene

study reported to date has reported anoverwhelming signal

of statistical significance.35

There are important limitations of our study. First, we

use pooled sequencing data to estimate allele frequency

in our tests of rare variants. Our sensitivity and specificity

analysis (Table S2 and Figure S1) suggest that this strategy

was effective at discovering rare variants in that it had little

evidence of false-positive findings due to technical arti-

facts. Second, we did not attempt to validate the rare vari-

ants identified in IL2RA and IL2RB by alternative methods

(like Sanger sequencing) but only used an indirect strategy

to assess the sensitivity and specificity of our sequencing

results by using GWAS data from 250 samples that were

included in our targeted sequencing. The results of this

analysis, together with the very high coverage in our

sequencing study and the stringent filters applied in

variant calling, support the quality of our sequencing

results. Third and finally, we used common variants to

match cases and controls in our pooled sequencing study.

It is possible that common variants do not adequately

capture the underlying population structure of rare vari-

ants,56 which might have biased the association statistics

in our genetic burden tests.

In conclusion, our study provides evidence of indepen-

dent RA risk alleles driven by variants in the protein-
The A
coding sequence of genes discovered by GWASs. These

alleles are rare, of low frequency, and common in the

general population, and each contributes a small effect to

disease risk. Our findings suggest that integrating sequence

data with large-scale genotyping will serve as an effective

strategy for discovering RA risk alleles in the future.
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