Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study


Published Online May 17, 2012
http://dx.doi.org/10.1016/S0140-6736(12)60312-2
This online publication has been corrected. The corrected version first appeared at thelancet.com on June 1, 2012
See Comment page 543
*These authors contributed equally to this work
Affiliations listed at end of paper

Summary

Background High plasma HDL cholesterol is associated with reduced risk of myocardial infarction, but whether this association is causal is unclear. Exploiting the fact that genotypes are randomly assigned at meiosis, and are unmodified by disease processes, mendelian randomisation can be used to test the hypothesis that the association of a plasma biomarker with disease is causal.

Methods We performed two mendelian randomisation analyses. First, we used as an instrument a single nucleotide polymorphism (SNP) in the endothelial lipase gene (LIPG Asn396Ser) and tested this SNP in 20 studies (20 913 myocardial infarction cases, 95 407 controls). Second, we used as an instrument a genetic score consisting of 14 common SNPs that exclusively associate with HDL cholesterol and tested this score in up to 12 482 cases of myocardial infarction and 41 331 controls. As a positive control, we also tested a genetic score of 13 common SNPs exclusively associated with LDL cholesterol.

Findings Carriers of the LIPG 396Ser allele (2·6% frequency) had higher HDL cholesterol (0·14 mmol/L higher, p=8×10⁻¹³) but similar levels of other lipid and non-lipid risk factors for myocardial infarction compared with non-carriers. This difference in HDL cholesterol is expected to decrease risk of myocardial infarction by 13% (odds ratio [OR] 0·87, 95% CI 0·84–0·91). However, we noted that the 396Ser allele was not associated with risk of myocardial infarction (OR 0·99, 95% CI 0·88–1·11, p=0·85). From observational epidemiology, an increase of 1 SD in HDL cholesterol was associated with reduced risk of myocardial infarction (OR 0·62, 95% CI 0·58–0·66). However, a 1 SD increase in HDL cholesterol due to genetic score was not associated with risk of myocardial infarction (OR 0·93, 95% CI 0·86–1·00, p=0·32). For LDL cholesterol, the estimate from observational epidemiology (a 1 SD increase in LDL cholesterol associated with OR 1·54, 95% CI 1·45–1·63) was concordant with that from genetic score (OR 2·13, 95% CI 1·88–2·42, p=8×10⁻¹³).

Interpretation Some genetic mechanisms that raise plasma HDL cholesterol do not seem to lower risk of myocardial infarction. These data challenge the concept that raising of plasma HDL cholesterol will uniformly translate into reductions in risk of myocardial infarction.


Introduction Cholesterol fractions such as LDL and HDL cholesterol are among the most commonly measured biomarkers in clinical medicine.1 Observational studies have shown that LDL and HDL cholesterol have opposing associations with risk of myocardial infarction, with LDL cholesterol being positively associated and HDL cholesterol being inversely associated.2-5 However, observational studies cannot distinguish between a causal role in the pathological process and a marker of the underlying
pathophysiology. These two possibilities can be distinguished in human beings by changes of the cholesterol fractions in large-scale randomised trials or by studies of inherited DNA variation. For LDL cholesterol, the results of both randomised trials of LDL-cholesterol-lowering treatments and from human mendelian diseases are concordant and suggest that plasma LDL cholesterol is causally related to risk of myocardial infarction. However, the available evidence for the causal relevance of HDL cholesterol from randomised trials or mendelian diseases is scarce and inconsistent.7,8

If a particular plasma biomarker is directly involved in an underlying pathological process, then inherited variation changing plasma concentrations of this biomarker should affect risk of disease in the direction and magnitude predicted by the plasma concentrations. Referred to as mendelian randomisation, this analytical approach has been previously applied to plasma HDL cholesterol, albeit with restricted sample sizes, a small number of single nucleotide polymorphisms (SNPs) at a few genes, and with SNPs that affect multiple lipid fractions.8–11 Hence, these studies have not been able to resolve fully the possible causal relevance of HDL cholesterol concentrations for risk of myocardial infarction.

Recently, we have used the genome-wide association approach to identify SNPs that affect blood lipid concentrations.16,17 Additionally, through resequencing, we identified a loss-of-function coding SNP at the endothelial lipase gene (LIPG Asn396Ser) that affects plasma HDL cholesterol in isolation.18–20 Here, we use these SNPs in case-control studies and prospective cohort studies to test the hypothesis that genetically raised plasma HDL cholesterol might be protective for myocardial infarction.

Methods

Study design

The study design consisted of two components. First, using a case-control design, we tested lipid-associated SNPs individually for association with risk of myocardial infarction. Second, using a mendelian randomisation design, we tested two instruments: (1) a single SNP that related exclusively to plasma HDL cholesterol (a loss-of-function coding polymorphism at the endothelial lipase gene, LIPG Asn396Ser, rs61735018); and (2) a genetic score consisting of 14 common SNPs that exclusively associate with HDL cholesterol.

Study participants

Characteristics of cases of myocardial infarction and controls are shown in appendix p 19. Data for up to 19139 cases of myocardial infarction and 50812 myocardial-infarction-free controls were available from 30 studies. Characteristics of the participants in six prospective cohort studies are shown in the appendix p 20. 50763 participants from six cohort studies were studied and, of these, 4228 developed an incident fatal or non-fatal myocardial infarction. All participants were of self-reported European or South Asian ancestry.

Statistical analysis

In myocardial infarction cases and controls, we tested each of 25 SNPs for association with myocardial infarction in up to 30 studies. These 25 SNPs represented the initial polymorphisms mapped for plasma HDL or LDL cholesterol concentrations with a genome-wide association approach.21 Each selected SNP has been associated with either HDL or LDL cholesterol at p<5×10⁻⁸. Genotyping details are provided in the appendix p 2. We undertook logistic regression with the outcome variable of myocardial infarction status, predictor variable of individual SNP genotype, and covariates of age, sex, and principal components of ancestry. We assumed a log-additive genetic model. Overall association for each SNP was evaluated with a fixed-effects inverse-variance-weighted meta-analysis.

Fatal or non-fatal myocardial infarction outcomes were ascertained in each of six prospective cohort studies as described in the appendix p 10. We constructed logistic regression models to examine the association of LIPG Asn396Ser genotype with myocardial infarction status, excluding participants who had had a previous myocardial infarction or ischaemic stroke. The predictor variable of LIPG Asn396Ser genotype was modelled in an additive model (ie, 0, 1, 2 copies of the 396Ser allele). Covariates in the model included age and sex. Overall association for each SNP was evaluated across the six studies with fixed-effects inverse-variance-weighted meta-analysis.

We estimated a predicted risk for LIPG Asn396Ser on the basis of the association of this SNP with plasma HDL cholesterol (appendix p 21) and the association of plasma HDL cholesterol with myocardial infarction (appendix p 22) in the population. Details are provided in the appendix p 2.

We undertook instrumental variable analysis using LIPG Asn396Ser in six prospective cohort studies as listed in the appendix p 23. We additionally did an instrumental variable analysis using multiple genetic variants as instruments.22 Details of the instrumental variable analysis methods are provided in the appendix p 4. We regarded a two-tailed p<0.05 as nominally significant. Heterogeneity statistics were calculated as described.23 SAS version 9.1, the R package, STATA, or PLINK software were used for all statistical analyses.24
case-control studies (Table 1). For nine of ten SNPs associated with LDL cholesterol, the allele correlated with increased LDL cholesterol was also associated with increased risk of myocardial infarction (p < 0.05; Table 1).

Having established that SNPs related to plasma LDL cholesterol consistently affected risk of myocardial infarction, we applied the same methodological framework in the same samples to test the hypothesis that genetic modulation of HDL cholesterol would affect risk of myocardial infarction. Of 15 loci related to plasma HDL cholesterol, at six loci \((LPL, TRIB1, \text{APOA1-APOC3-APOA4-APOA5})\) cluster, CETP, ANGPTL4, and GALNT2

### Table 1: Association of myocardial infarction (MI) with single nucleotide polymorphisms (SNPs) previously found to relate to plasma LDL cholesterol

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Gene(s) of interest within or near associated interval</th>
<th>Major allele, minor allele (minor allele frequency)</th>
<th>Modelled allele</th>
<th>Effect of modelled allele on plasma LDL cholesterol (mmol/L)*</th>
<th>Effect of modelled allele on plasma triglycerides (mmol/L)*</th>
<th>Effect of modelled allele on plasma HDL cholesterol (mmol/L)*</th>
<th>Sample size (MI cases/MI-free controls)</th>
<th>For modelled allele, observed change in MI risk (%; 95% CI)</th>
<th>For modelled allele, p value for association with MI</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>CELSR2, PSRC1, SORT1†</td>
<td>T, C (0.21)</td>
<td>T</td>
<td>0.20</td>
<td>-0.03</td>
<td>-</td>
<td>19 139/50 812</td>
<td>16% (12-19)</td>
<td>4 x 10^{-14}†</td>
</tr>
<tr>
<td>3</td>
<td>LDLR</td>
<td>G, T (0.10)</td>
<td>G</td>
<td>0.23</td>
<td>-</td>
<td>-0.09</td>
<td>16 503/46 576</td>
<td>23% (17-30)</td>
<td>4 x 10^{-14}†</td>
</tr>
<tr>
<td>4</td>
<td>PCSK9</td>
<td>T, C (0.17)</td>
<td>T</td>
<td>0.05</td>
<td>-</td>
<td>-</td>
<td>18 455/23 075</td>
<td>13% (9-16)</td>
<td>1 x 10^{-9}†</td>
</tr>
<tr>
<td>6</td>
<td>LPA†</td>
<td>T, C (0.02)</td>
<td>C</td>
<td>0.36†</td>
<td>-</td>
<td>-</td>
<td>665 858/28 231</td>
<td>72% (39-211)</td>
<td>4 x 10^{-14}†</td>
</tr>
<tr>
<td>8</td>
<td>FASG1, APOB1</td>
<td>G, A (0.20)</td>
<td>G</td>
<td>0.14</td>
<td>-</td>
<td>-</td>
<td>19 139/50 812</td>
<td>8% (4-12)</td>
<td>5 x 10^{-14}†</td>
</tr>
<tr>
<td>11</td>
<td>TRIB1</td>
<td>C, T (0.32)</td>
<td>T</td>
<td>0.13</td>
<td>-</td>
<td>-</td>
<td>14 818/45 454</td>
<td>8% (4-11)</td>
<td>5 x 10^{-14}†</td>
</tr>
<tr>
<td>12</td>
<td>HNF3A†</td>
<td>A, G (0.44)</td>
<td>G</td>
<td>0.07</td>
<td>-</td>
<td>-</td>
<td>19 139/50 812</td>
<td>5% (3-9)</td>
<td>2 x 10^{-4}†</td>
</tr>
<tr>
<td>13</td>
<td>APOE-APOC1-APOC4-APOC4†</td>
<td>A, G (0.33)</td>
<td>A</td>
<td>0.12</td>
<td>-</td>
<td>-</td>
<td>19 139/50 812</td>
<td>4% (1-7)</td>
<td>0.007†</td>
</tr>
<tr>
<td>14</td>
<td>TIMD4-HAVCR1†</td>
<td>C, T (0.38)</td>
<td>T</td>
<td>0.06</td>
<td>-</td>
<td>-</td>
<td>19 139/50 812</td>
<td>4% (1-7)</td>
<td>0.01†</td>
</tr>
<tr>
<td>19</td>
<td>ABCG8</td>
<td>C, G (0.37)</td>
<td>C</td>
<td>0.06</td>
<td>-</td>
<td>-</td>
<td>18 310/49 897</td>
<td>3% (0-6)</td>
<td>0.08</td>
</tr>
</tbody>
</table>

*Data presented from a meta-analysis of seven cohorts (n up to 19 840) as presented in reference 16; the effect of each SNP on a lipid trait was modelled if the association of the SNP with a plasma lipid trait exceeded nominal significance (p < 0.05). †Loci and SNPs that exceeded nominal significance (p < 0.05) for association of modelled allele with MI; all modelled alleles increased LDL cholesterol. ¶The C allele at this LPA variant is related to increased plasma lipoprotein(a) as presented in reference 16.

### Table 2: Association of myocardial infarction (MI) with single nucleotide polymorphisms (SNPs) previously found to relate to plasma HDL cholesterol

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Gene(s) of interest within or near associated interval</th>
<th>Major allele, minor allele (minor allele frequency)</th>
<th>Modelled allele</th>
<th>Effect of modelled allele on plasma HDL cholesterol (mmol/L)*</th>
<th>Effect of modelled allele on plasma triglycerides (mmol/L)*</th>
<th>Effect of modelled allele on plasma LDL cholesterol (mmol/L)*</th>
<th>Sample size (MI cases/MI-free controls)</th>
<th>For modelled allele, observed change in MI risk (%; 95% CI)</th>
<th>For modelled allele, p value for association with MI</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>APOA1-APOA3-APOA4-APOA5†</td>
<td>A, G (0.07)</td>
<td>A</td>
<td>0.05</td>
<td>-0.27</td>
<td>-0.09</td>
<td>18 310/49 897</td>
<td>-10% (-15 to -5)</td>
<td>8 x 10^{-14}†</td>
</tr>
<tr>
<td>19</td>
<td>APOE-APOC1-APOC4-APOC4†</td>
<td>A, G (0.40)</td>
<td>A</td>
<td>0.02</td>
<td>-0.03</td>
<td>-</td>
<td>19 139/50 812</td>
<td>-3% (-6 to -1)</td>
<td>0.021†</td>
</tr>
<tr>
<td>2</td>
<td>ANGPTL4†</td>
<td>C, T (0.16)</td>
<td>C</td>
<td>0.05</td>
<td>-0.07</td>
<td>-</td>
<td>13 595/16 423</td>
<td>-5% (-10 to -1)</td>
<td>0.031†</td>
</tr>
<tr>
<td>16</td>
<td>CETP†</td>
<td>C, A (0.32)</td>
<td>A</td>
<td>0.10</td>
<td>-0.03</td>
<td>-</td>
<td>16 503/46 576</td>
<td>-4% (-7 to 0)</td>
<td>0.041†</td>
</tr>
<tr>
<td>4</td>
<td>LIPG†</td>
<td>A, G (0.25)</td>
<td>G</td>
<td>0.14†</td>
<td>-</td>
<td>-</td>
<td>17 165/49 077</td>
<td>-6% (-10 to 0)</td>
<td>0.41</td>
</tr>
</tbody>
</table>

*Data presented from a meta-analysis of seven cohorts (n up to 19 840) as presented in reference 16; the effect of each SNP on a lipid trait was modelled if the association of the SNP with a plasma lipid trait exceeded nominal significance (p < 0.05). †Loci and SNPs that exceeded nominal significance (p < 0.05) for association of modelled allele with MI; all modelled alleles increased HDL cholesterol. ¶Effect size presented is from the Atherosclerosis Risk in Communities Study.

the allele correlated with raised HDL cholesterol was also associated with decreased risk of myocardial infarction (p<0.05; table 2). Of note, at the *HNFA4* locus, the HDL-cholesterol-raising allele was surprisingly associated with increased risk of myocardial infarction (p=0.0009).

All six SNPs associated with both HDL cholesterol and myocardial infarction had additional effects on plasma LDL cholesterol or triglycerides, or both (p<5×10⁻⁹ for the additional effects on LDL cholesterol or triglycerides). For example, at *APOA1-APOC3-APOA4-APOA5 rs6589566*, the allele associated with increased HDL cholesterol also relates to reduced LDL cholesterol and reduced triglycerides. The pleiotropic effects of such SNPs undermine the ability to define a causal role for HDL cholesterol, independent of effects on LDL cholesterol or triglycerides.

To evaluate plasma HDL cholesterol specifically, we undertook mendelian randomisation, a form of instrumental variable analysis. We identified a variant that affected only plasma HDL cholesterol without changing other lipid or non-lipid cardiovascular risk factors. In the *LIPG* gene, roughly 2.6% of individuals carry a serine substitution at aminoacid 396 (substituted for wild-type asparagine). Carrier status for 396Ser was associated with significant increases in HDL cholesterol in each of four prospective cohort studies, with the effect size ranging from 0.08 mmol/L to 0.28 mmol/L, per copy of the Ser allele (figure 1, appendix p 21; p=0.002 in FHS, p=0.02 in CCHS, p=5×10⁻⁶ in MDC, and p=7×10⁻⁷ in ARIC).

In a meta-analysis including all four studies, carrier status for 396Ser was associated with an increase of roughly 0.29 SD units in HDL cholesterol (p=8×10⁻¹⁴). There was no evidence of heterogeneity across the four studies (I²=0.58; Cochran’s heterogeneity p=0.07).

In any of the six studies (figure 2). Combining these

![Figure 1: Plasma HDL cholesterol concentrations in carriers versus non-carriers of the Ser allele at the *LIPG* Asn396Ser polymorphism](image)

Error bars show standard error. FHS=Framingham Heart Study. CCHS=Copenhagen City Heart Study. MDC=Malmo Diet and Cancer Study. ARIC=Atherosclerosis Risk in Communities Study.

![Figure 2: Association of *LIPG* Asn396Ser with myocardial infarction in 116 320 participants from 20 studies](image)

In each study, the HDL-cholesterol-raising serine allele was modelled.

myocardial infarction by 13% (odds ratio [OR] 0.87, 95% CI 0.84–0.91).

To establish whether *LIPG* 396Ser carriers are indeed protected from risk of myocardial infarction, we studied the association of *LIPG* Asn396Ser with incident myocardial infarction in 50763 participants from six prospective cohort studies, the gold standard with respect to epidemiological study design. Of these participants, 4228 developed a first myocardial infarction event. *LIPG* Asn396Ser was not associated with myocardial infarction in any of the six studies (figure 2). Combining these
In a mendelian randomisation analysis, a 1 SD increase in HDL cholesterol was associated with lowered risk of myocardial infarction (OR 1·54, 95% CI 1·45–1·63; appendix p 22). From observational epidemiology, an increase of 1 SD in usual LDL cholesterol was associated with raised risk of myocardial infarction (OR 1·54, 95% CI 1·45–1·63; appendix p 22). In a mendelian randomisation analysis, a 1 SD increase in LDL cholesterol due to genetic score was also associated with risk of myocardial infarction (OR 2·13, 95% CI 1·69–2·69, p=2×10⁻¹⁰; table 4). From observational epidemiology, a 1 SD rise in usual HDL cholesterol was associated with lowered risk of myocardial infarction.
For a biomarker directly involved in disease pathogenesis, we expect a genetic variant that modulates the biomarker to likewise confer risk of disease. We tested this hypothesis for two plasma biomarkers: LDL and HDL cholesterol. SNPs affecting LDL cholesterol were consistently related to risk of myocardial infarction. However, we unexpectedly found that LIPG Asn396Ser, a genetic variant that specifically and substantially increases plasma HDL cholesterol, did not reduce risk of myocardial infarction. A genetic score combining 14 variants exclusively related to HDL cholesterol also showed no association with risk of myocardial infarction (panel).

These results challenge several established views about plasma HDL cholesterol. First, these data question the concept that raising of plasma HDL cholesterol should uniformly translate into reductions in risk of myocardial infarction. We raise the strong possibility that a specific means of raising HDL cholesterol should uniformly translate into reductions in risk of myocardial infarction. A genetic score combining 14 variants exclusively related to HDL cholesterol also showed no association with risk of myocardial infarction (panel).

These results challenge several established views about plasma HDL cholesterol. First, these data question the concept that raising of plasma HDL cholesterol should uniformly translate into reductions in risk of myocardial infarction. We raise the strong possibility that a specific means of raising HDL cholesterol should uniformly translate into reductions in risk of myocardial infarction. A genetic score combining 14 variants exclusively related to HDL cholesterol also showed no association with risk of myocardial infarction (panel).

These results challenge several established views about plasma HDL cholesterol. First, these data question the concept that raising of plasma HDL cholesterol should uniformly translate into reductions in risk of myocardial infarction. We raise the strong possibility that a specific means of raising HDL cholesterol should uniformly translate into reductions in risk of myocardial infarction. A genetic score combining 14 variants exclusively related to HDL cholesterol also showed no association with risk of myocardial infarction (panel).

These results challenge several established views about plasma HDL cholesterol. First, these data question the concept that raising of plasma HDL cholesterol should uniformly translate into reductions in risk of myocardial infarction. We raise the strong possibility that a specific means of raising HDL cholesterol should uniformly translate into reductions in risk of myocardial infarction. A genetic score combining 14 variants exclusively related to HDL cholesterol also showed no association with risk of myocardial infarction (panel).

These results challenge several established views about plasma HDL cholesterol. First, these data question the concept that raising of plasma HDL cholesterol should uniformly translate into reductions in risk of myocardial infarction. We raise the strong possibility that a specific means of raising HDL cholesterol should uniformly translate into reductions in risk of myocardial infarction. A genetic score combining 14 variants exclusively related to HDL cholesterol also showed no association with risk of myocardial infarction (panel).

These results challenge several established views about plasma HDL cholesterol. First, these data question the concept that raising of plasma HDL cholesterol should uniformly translate into reductions in risk of myocardial infarction. We raise the strong possibility that a specific means of raising HDL cholesterol should uniformly translate into reductions in risk of myocardial infarction. A genetic score combining 14 variants exclusively related to HDL cholesterol also showed no association with risk of myocardial infarction (panel).

These results challenge several established views about plasma HDL cholesterol. First, these data question the concept that raising of plasma HDL cholesterol should uniformly translate into reductions in risk of myocardial infarction. We raise the strong possibility that a specific means of raising HDL cholesterol should uniformly translate into reductions in risk of myocardial infarction. A genetic score combining 14 variants exclusively related to HDL cholesterol also showed no association with risk of myocardial infarction (panel).

These results challenge several established views about plasma HDL cholesterol. First, these data question the concept that raising of plasma HDL cholesterol should uniformly translate into reductions in risk of myocardial infarction. We raise the strong possibility that a specific means of raising HDL cholesterol should uniformly translate into reductions in risk of myocardial infarction. A genetic score combining 14 variants exclusively related to HDL cholesterol also showed no association with risk of myocardial infarction (panel).

These results challenge several established views about plasma HDL cholesterol. First, these data question the concept that raising of plasma HDL cholesterol should uniformly translate into reductions in risk of myocardial infarction. We raise the strong possibility that a specific means of raising HDL cholesterol should uniformly translate into reductions in risk of myocardial infarction. A genetic score combining 14 variants exclusively related to HDL cholesterol also showed no association with risk of myocardial infarction (panel).
functional measures in human beings might be large-scale study of relevant inherited DNA variation of HDL function. There are inherent limitations to the mendelian randomisation study design. Naturally occurring genetic variation could be a useful instrument to assess causality provided that several requirements have been satisfied. First, one needs suitable genetic variants for the study of the modifiable exposure of interest (in our case, plasma HDL cholesterol). Although many loci are associated with plasma HDL cholesterol, we found LIPC Asn396Ser to be particularly informative because it is specifically associated with substantial increases in HDL cholesterol. Additionally, we evaluated a set of 14 common genetic variants that also exclusively affected HDL cholesterol. Both instruments, LIPC Asn396Ser and the genetic score, produced similar results.

Second, reliable genotype-to-intermediate-phenotype and intermediate-phenotype-to-disease effect estimates are needed. To obtain as precise estimates as possible, we derived SNP-to-lipid effect estimates from analysis of a large sample involving more than 24,000 participants. Estimates of plasma lipid to myocardial infarction were derived from meta-analysis of four large cohort studies involving more than 25,000 participants.

Third, there must not be pleiotropic effects of the genetic variants of interest. We cannot exclude all potential pleiotropic effects of the LIPC Asn396Ser SNP; however, we have assessed but did not detect pleiotropic effects on other cardiovascular risk factors including LDL cholesterol, small LDL particle concentration, triglycerides, body-mass index, systolic blood pressure, plasma C-reactive protein, and type 2 diabetes status.

Finally, the absence of association of individual SNPs with myocardial infarction could be due to low statistical power. However, for the crucial SNP in the mendelian randomisation study for plasma HDL cholesterol, we had sufficient power. In this study, LIPC Asn396Ser has been tested in 20913 myocardial infarction cases and 95,407 myocardial-infarction-free participants. We had 90% power to detect the expected 13% reduction in risk of myocardial infarction for the LIPC Asn396Ser variant (at a two-sided α of 0.05).

In summary, our results showed that polymorphisms related to plasma LDL cholesterol were consistently associated with risk of myocardial infarction, whereas this was not the case for variants related to plasma HDL cholesterol. A polymorphism in the endothelial lipase gene and a genetic score of 14 common SNPs that specifically raised HDL cholesterol were not associated with myocardial infarction, suggesting that some genetic mechanisms that raise HDL cholesterol do not lower risk of myocardial infarction. Hence, interventions (lifestyle or pharmacological) that raise plasma HDL cholesterol cannot be assumed ipso facto to lead to a corresponding benefit with respect to risk of myocardial infarction.

Affiliations
Department of Pharmacology and Department of Genetics (B F Voight PhD), University of Pennsylvania, Philadelphia, PA, USA; Center for Human Genetic Research (B F Voight PhD), C Newton-Chez MD, K Musunuru MD, J Pirrincucello RS, R Do PhD, M J Daly PhD, S Purcell PhD, Prof D Altshuler PhD, S Kathiresan MD), Department of Molecular Biology (Prof D Altshuler MD), Cardiovascular Research Center (C Newton-Chez MD, K Musunuru MD, J Pirrincucello RS, R Do PhD, S Kathiresan MD), Cardiology Division (C Newton-Chez MD, C J O’Donnell MD, S Kathiresan MD), Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA (B F Voight PhD, C Newton-Chez MD, K Musunuru MD, J Pirrincucello RS, Prof P I W de Bakker PhD, M J Daly PhD, C Guiducci BS, N P Burtt BS, A Surts BS, E Gonzalez BS, S Purcell PhD, S Gabriel PhD, Prof D Altshuler PhD, S Kathiresan MD); Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA (G M Peloso PhD, S Demissie PhD, Prof L A Cupples PhD); Framingham Heart Study of the National, Heart, Lung, and Blood Institute, Framingham, MA, USA (G M Peloso PhD, S Demissie PhD, Prof L A Cupples PhD, C J O’Donnell MD); Diabetes and Cardiovascular Disease Genetic Epidemiology (Prof O Melander MD), Skagia University Hospital, Lund University, Malmo, Sweden; Department of Clinical Biochemistry, Section for Molecular Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark (R Friksie-Schmidt DMSc, Prof A Tybyjaerg-Hansen DMSc); Human Genetics Center, University of Texas Health Science Center, at Houston, Houston, TX, USA (M Barbalic PhD, E Boerwinkle PhD); Department of Nutrition and Epidemiology (M K Jensen PhD, E R Rimm ScD), and Department of Nutrition (E L Ding ScD), Harvard School of Public Health, Boston, MA, USA; Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA (E R Rimm ScD, E L Ding ScD); deCODE Genetics, Reykjavik, Iceland (H Holm MD, G Thorleifsson PhD, K Stefansson MD, U Thorsteinsdottir PhD); Clinical Pharmacology and The Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK (T Johnson PhD); Medizinische Klinik II (Prof H Schunkert MD, J Erdmann PhD, P Diemert MD), and Institut fur Medizinische Biometrie und Statistik (A Schillert PhD, C Willenborg MSc, I R Koenig PhD, A Ziegler PhD), University of Luebeck, Luebeck, Germany; Department of Cardiovascular Sciences (Prof N J Samani MD), and Department of Health Sciences (Prof J F Thompson PhD), University of Leicester, Leicester, UK; Leicester National Institute of Health Research Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester, UK (Prof N J Samani MD); Biostatistics and Epidemiology (M L Li PhD), and The Institute for Translational Medicine and Therapeutics and The Cardiovascular Institute (M Reilly MD, Prof D Rader MD), University of Pennsylvania, Philadelphia, PA, USA; Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK (D Saleheen MBBS, Prof J Danish FRCPC); The John & Jennifer Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada (L Chen MSc, A F R Stewart PhD, Prof R McPherson MD, Prof R Roberts MD); The Clinical Trial Service Unit and Epidemiological Studies Unit (R Clarke MD, C J Hopewell PhD), and Department of Cardiovascular Medicine (J Peden PhD, Prof H Watkins MD), University of Oxford, Oxford, UK, on behalf of the PROCARDIS Consortium; University of Iceland Faculty of Medicine, Reykjavik, Iceland (K Stefansson MD, U Thorsteinsdottir PhD, G Thorgersson MD); Department of Internal Medicine, Division of Cardiology, Landspitali University Hospital, Reykjavik, Iceland (G Thorgersson); Population Health Research Institute, Hamilton Health Sciences and Department of Medicine and Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON, Canada (Prof S Anand PhD); Department of Medicine and Department of Human Genetics, McGill University, Montreal, QC, Canada (J Engert PhD); Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
2 Prospective Studies Collaboration. Blood cholesterol and vascular Reference

Acknowledgments

Conflict of interest

Acknowledgments

This Article is dedicated to Leena Peltonen, who passed away on March 11, 2010. A full listing of the acknowledgments is provided in the appendix p 12.

References


