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Use of a Multiethnic Approach to Identify Rheumatoid-
Arthritis-Susceptibility Loci, Tp36 and 17q12

Fina A.S. Kurreeman,!.245 Eli A. Stahl,1.24 Yukinori Okada,®7 Katherine Liao,2 Dorothée Diogo,!.2:4
Soumya Raychaudhuri, 24 Jan Freudenberg,® Yuta Kochi,®7 Nikolaos A. Patsopoulos,2:3.4

Namrata Gupta,# CLEAR investigators,1¢ Cynthia Sandor,1.24 So-Young Bang,® Hye-Soon Lee,?

Leonid Padyukov,10 Akari Suzuki,®6 Kathy Siminovitch,11.12,13 Jane Worthington,14 Peter K. Gregersen,8
Laura B. Hughes, 15 Richard J. Reynolds,!5 S. Louis Bridges, Jr.,15 Sang-Cheol Bae,®

Kazuhiko Yamamoto,®7 and Robert M. Plengel.2.4.*

We have previously shown that rheumatoid arthritis (RA) risk alleles overlap between different ethnic groups. Here, we utilize a multi-
ethnic approach to show that we can effectively discover RA risk alleles. Thirteen putatively associated SNPs that had not yet exceeded
genome-wide significance (p < 5 x 107®) in our previous RA genome-wide association study (GWAS) were analyzed in independent
sample sets consisting of 4,366 cases and 17,765 controls of European, African American, and East Asian ancestry. Additionally, we con-
ducted an overall association test across all 65,833 samples (a GWAS meta-analysis plus the replication samples). Of the 13 SNPs
investigated, four were significantly below the study-wide Bonferroni corrected p value threshold (p < 0.0038) in the replication
samples. Two SNPs (rs3890745 at the 1p36 locus [p = 2.3 x 107'?] and 152872507 at the 17q12 locus [p = 1.7 x 10~°]) surpassed
genome-wide significance in all 16,659 RA cases and 49,174 controls combined. We used available GWAS data to fine map these two
loci in Europeans and East Asians, and we found that the same allele conferred risk in both ethnic groups. A series of bioinformatic
analyses identified TNFRSF14-MMEL]1 at the 1p36 locus and IKZF3-ORMDL3-GSDMB at the 17q12 locus as the genes most likely associ-
ated with RA. These findings demonstrate empirically that a multiethnic approach is an effective strategy for discovering RA risk loci, and
they suggest that combining GWASs across ethnic groups represents an efficient strategy for gaining statistical power.

Rheumatoid arthritis (RA [MIM 180300]) is characterized
by chronic inflammation and destruction of the synovial
joints, the latter of which leads to progressive damage
and disability. Both environmental and genetic factors
are involved in the etiology of RA, and there is an esti-
mated genetic component between 50% and 60%.' Candi-
date-gene studies and genome-wide association studies
(GWASs) have begun to unravel the complex genetic
architecture of RA, for which >35 genetic loci have been
identified to date.?"® All of these loci have met a stringent
genome-wide significance threshold (p < 5 x 1079,
However, the SNPs identified individually increase risk in
small increments and collectively only explain ~18% of
the overall genetic heritability.”> One of the explanations
for this “missing heritability” is that many more common
risk alleles remain to be discovered in larger studies.

The majority of RA risk alleles have been identified and
validated in patients who are of European ancestry and
are seropositive for disease-specific autoantibodies (either
anticitrullinated protein antibodies [ACPAs] or rheumatoid
factor [RF]). Several studies have shown that validated RA

risk alleles contribute to risk in other ethnic groups,
including patients of African, Hispanic, and Asian
ancestry.””'* Although two GWASs have been performed
in individuals of East Asian ancestry (Japanese and
Korean),” no study has integrated data in a multiethnic
fashion to discover new RA risk loci. Indeed, there has
been debate in the literature as to whether common vari-
ants discovered by GWASs will be ethnic specific or con-
tribute to risk across all ethnic groups, not only in RA but
also more generally in other complex traits.'' As proof of
concept that integrating multiethnic data is an effective
strategy for discovering RA risk loci, we used a multiethnic
replication panel to test 13 SNPs that did not reach
genome-wide significance (p < 5 X 107®) in our pre-
vious GWAS.

The initial GWAS meta-analysis used as a starting point
for the current study has been described in greater detail
elsewhere.? In brief, the GWAS consisted of 5,505 RA cases
and 22,603 controls, and follow-up SNP genotyping was
performed in a replication collection of 6,768 cases and
8,806 controls of European ancestry (Table S1, available
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Table 1. Previous Association of 13 SNPs in RA GWAS Meta-Analysis and Replication Sample Sets of European Ancestry
Previous
SNP Characteristics® Alleles® GWAS* Replication Previous Joint Meta-Analysis®
SNP Chr. Position (bp) Genes A1l A2 Risk OR p OR  Pone-tailea OR Ploint Q
1s3890745*  1p36 2,543,484 TNFRSF14, T C T 1.13 1.14 x 10° 1.08 0.069 1.12 5.28 x 1077 0.23
MMEL1
17543174 1921 152,794,296 IL6R C T C 1.14 6.00 x 10°° 1.07 0.012 1.10 1.01 x 107° 0.10
1s12746613* 123 159,733,666 FCGR2A T C T 1.13 4.84x107* 1.10 0.011 1.12 3.34 x 107° 0.19
1s10919563* 1q32 196,967,065 PTPRC G A G 1.15 1.80 x 10™* 1.11 0.005 1.13 6.27 x 107¢ 0.87
1513119723 4927 123,437,763 IL2, IL21 G A A 0.89 1.03x107* 0.87 6.75 . 0.88 5.48 x 1077 0.46
x 10~
rs11594656  10pl5 6,162,015 IL2RA T A T 1.10 896 x 10°* 1.05 0.037 1.08 0.0003 0.90
152793108 10p11 31,419,111 ZEB1 T C T 1.07 5.01 x 107 1.08 0.001 1.07 3.98 x 10°° 0.82
1s540386* 11p12 36,481,869 TRAF6 cC T C 1.14 1.56 x 10™* 1.09 0.013 1.11 1.69 x 107° 0.09
1rs3184504 12q24 110,368,991 SH2B3 T C T 1.07 2.81x 107 1.09 2.48 . 1.08 4.68 x 107°° 0.06
X 10~
158045689 16p11 28,895,770 CD19, cC T C 1.14 535x10° 1.06 0.014 1.09 2.45 x 10°° 0.35
NFATC2IP
152872507 17q12 35,294,289 IKZF3, G A A 092 1.66 x 107* 0.93 0.002 0.92 2.87 x 10°¢ 0.83
ORMDL3,
GSDMB
rs11203203 21922 42,709,255 UBASH3A A G A 1.11 3.14x10°° 1.07 0.017 1.09 4.64 x 107° 0.49
15754217 22q11 20,269,675 UBEZ2L3 T G T 1.10 1.24 x 107 1.07 0.010 1.09 7.98 x 107° 0.96

We list results of 13 SNPs that were previously suggestive in two GWAS meta-analysis studies but that had not yet reached the conservative genome-wide signif-
icance level at p < 5 x 1078, All odds ratios (ORs) are reported with respect to allele A1. The following abbreviations are used: Chr., chromosomal region; and Q,
Cochran’s Q test for heterogeneity of odds ratios across all sample collections.

2SNPs marked by an asterisk were suggestive in Raychaudhuri et al.,® and all remaining SNPs were suggestive in Stahl et al.> Chromosome and base-pair positions

are with respect to the UCSC HG18 build.

PAlleles at each SNP (A1 and A2) and the allele that was previously identified as the risk allele (Risk).

“Results from a recently performed GWAS meta-analysis incorporating principal components for the correction of population stratification.*
9Results from previous replication efforts as part of Raychaudhuri et al.® and Stahl et al.2

®Results of the meta-analysis (performed with the inverse-variance method of meta-analysis) of all available datasets.'”

online). Table 1 displays a summary of the SNPs from
this study and suggestive evidence of association, which
we defined as SNPs for which pgwas < 0.005 and
Preplication < 0.05 but which did not reach poveran < S X
107® in all samples combined. We included one SNP,
rs3890745 at the 1p36 locus, for which prepiication
0.069 from this study because it had previously demon-
strated suggestive evidence of replication,® but it had not
yet reached poveran < S5 X 1078 in all samples combined.
The purpose of the current study is to test these 13 puta-
tively RA-associated SNPs in an independent, multiethnic
collection of RA case-control samples and provide defini-
tive evidence (Poveran < S X 107%) of association with
RA risk.

For the multiethnic replication study described herein,
we used an independent collection of 4,366 RA cases and
17,765 controls (Table 2). All RA patients satisfied interna-
tional criteria for the diagnosis of RA. The replication
samples of European ancestry were derived from a study
via electronic health records (EHR).® A total of 981
ACPA™ cases and 2,048 controls of European genetic an-
cestry were genotyped with Sequenom iPLEX at the Broad
Institute via methods previously described.® Because these

RA patients were recruited from the same geographic
region as samples from one of our GWASs, we used 129
SNPs that overlapped between the GWAS and the replica-
tion study to remove duplicate individuals. Samples in
which the proportion of alleles shared with an identity
by state of 1 were excluded from the EHR replication data-
set, leaving 711 ACPA™ cases and 1,968 controls. The total
genotyping rate across the 13 SNPs in these individuals
was 97%. The African American sample set consisted of
440 seropositive cases (RF™ or ACPA™) from the CLEAR
(Consortium for the Longitudinal Evaluation of African
Americans with Farly Rheumatoid Arthritis) registry'®
and 795 controls (kindly provided by Drs. Robert
P. Kimberly and Jeffrey C. Edberg) from either the CLEAR
Registry or the Birmingham, Alabama area. We genotyped
these samples at the Broad Institute by using Sequenom
iPLEX. The total genotyping rate across the 13 SNPs in
these individuals was 99%. The quality-control (QC)
metrics can be found in Table S2. The Japanese dataset con-
sisted of 2,414 cases and 14,245 controls.'?> We generated
genotype data with the Illumina HumanHap610-Quad
BeadChip, and we performed imputation by using
MACH version 1.0.16 and HapMap Phase II JPT+CHB as
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Table 2. Characteristics of Samples Included in Our Multiethnic Replication Panel
Geographic Case Autoantibody Genotyping Case-Control Stratification
Study Origin Ethnicity Status Cases Controls Platform Correction
EHR EU Boston, USA  European  100% ACPA" 711 1,968 Sequenom iPLEX ancestry informative markers,
Descent PC matching, and self-reported
ancestry
CLEAR Southeastern  African 100% RF* 440 795 Sequenom iPLEX ethnically and geographically
USA American  or ACPA™ matched
The BioBank  Japan Japanese 76% RFY, 2,414 14,245 Illumina GWAS data PC matching and
Japan Project 79% ACPA™ HumanHap610-Quad  self-reported ancestry
BeadChip
Korea Seoul, Korea  Korean 96% ACPA* 801 757 Ilumina 550v3/660w  GWAS data PC matching

The following abbreviations are used: GWAS, genome-wide association study; and PC, principal components.

a reference panel (release 24), as previously described.'?
The Korean dataset was genotyped with the Illumina
550v3/660w platform, and 1 Mb regional imputation was
performed with BEAGLE and HapMap phase III CHB+JPT
as a reference panel.'* From the Korean dataset, one SNP
(rs3890745) could not be imputed because very few SNPs
passed QC at this locus in this dataset. Table 3 has a
summary of the SNPs used in the multiethnic replication
and includes proxy SNPs used in some sample collections.

To test for association, we obtained odds ratios and con-
fidence intervals from unconditional logistic regression in
each individual dataset as implemented in SNPTEST v2'°
(for European GWAS sample sets) or PLINK'® (for all re-
maining sample sets). We performed meta-analysis by
using the inverse-variance fixed method'” in R version
2.10 in the following three phases: (1) six GWASs and
previously genotyped sample sets, all of European descent
(Table 1); (2) four multiethnic-replication sample sets
(Table 3); and (3) all 18 available datasets (Table 3).
Heterogeneity-of-odds ratios across all sample collections
were assessed with Cochran’s Q method as implemented
in R. Z scores across each population under study can be
found in Table S3.

Of the 13 previously suggestive SNPs investigated
(Table 1), seven SNPs replicated at p < 0.05 (Table 3).
Four of these (rs3890745 at chrlp36, 1511594656 at
chr10p15, rs8045689 at chrl6pll, and rs2872507 at
chr17q12) were significantly below the study-wide Bonfer-
roni corrected p value threshold (p < 0.0038) (Table 3).
Two SNPs, 1s3890745 (at chrlp36) and rs2872507 (at
chr17q12), surpassed the genome-wide conservative level
of significance in a joint analysis of the multiethnic repli-
cation sample sets and previous European GWAS and
replication datasets (p = 2.3 x 10 2 and p = 1.7 x 1077,
respectively) consisting of 16,659 cases and 49,174 con-
trols. We note that one SNP, rs8045689, had a lower geno-
type call rate (90.1%) in the European replication cohort
(Table S2) and had evidence of heterogeneity in the multi-
ethnic replication (Table 3).

All SNPs with p < 0.05 in replication have been impli-
cated in other immune-mediated diseases, supporting the
idea that they represent true positive associations in RA.

For the two SNPs that reached genome-wide significance,
both are associated with other autoimmune diseases
(rs3890745 at chrlp36—Ulcerative Colitis [UC'® (MIM
605225)] and Celiac disease'® [MIM 212750]; 152872507
at chr17q12—Crohn disease®® [MIM 26600], UC*! [MIM
26600], type 1 diabetes®® [T1D (MIM 222100)], asthma?®?
[MIM 600807], and primary biliary cirrhosis** [MIM
109720]). SNPs at the chrl6pll (rs8045689, combined
p = 7.3 x 107®) and 10p15 (rs11594656, combined p =
8.46 x 107° loci have previously been associated with
T1D,* and the same risk allele predisposes to both RA
and T1D. Several SNPs for which results were replicated
at p < 0.05 in our study are associated with immune-
related diseases: rs11203203 at chr21q22 (celiac disease),?
1s3184504 at chr12q24 (celiac disease and T1D),***” and
152793108 at chr10p11 (T1D) (May 2009 release of the
online T1D database??).

We used available GWAS data to fine map the two loci
that reached genome-wide significance (Figures 1 and 2).
At the chrlp36 locus, the best SNP, rs3890745, is strongly
associated with RA risk in both European and Japanese
datasets (Figures 1A-1C). This SNP was not genotyped or
imputed into our Korean dataset because of the low-
density of genotyped SNPs in the region. In both GWAS
datasets, this SNP (or SNPs in high linkage disequilibrium
[LD]) represents the strongest signal of association. After
conditional SNPTEST analysis, no additional signal re-
mains (Figure S1A). Thus, we conclude that the causal
variant is in strong LD with rs3890745.

In an attempt to identify the most likely associated gene
and any potential causal variants in LD with rs3890745, we
performed a series of bioinformatic analyses. First, we
used GRAIL?® to search the region for genes that were
most closely related to other established RA risk loci. Using
the GRAIL default parameters (CEU [Utah residents with
ancestry from northern and western Europe from the
CEPH collection] HapMap release 21; PubMed text [Dec.
2006), gene size correction “off”), we used a set of 36 vali-
dated RA risk-associated SNPs as “seed regions” (selected
from Stahl et al.?), and we used our 13 suggestive SNPs as
“query regions.” The following six genes are in the region
of LD: PANK4 (MIM 606162), MMEL1 (MIM 18030),
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Table 3. Independent Replication from Populations of Diverse Ancestry Including Europeans, African Americans, and East Asians

Europeans African Americans Japanese Koreans Multiethnic Replication Joint Meta-Analysis
SNP Chr. Locus Case Control OR p* Case Control OR p* Case Control OR p* Case Control OR p* OR p* Q OR  Pjoint Q
1s3890745 1 TNFRSF14 0.71 0.67 1.22 0.002 0.49 0.46 1.14 0.07 0.53 0.50 1.13 5.34 . not imputable 1.14 4.0 x 1077 0.60 1.13 2.3 x 10°*? 0.37

X 107
157543174 1 IL6R 0.20 0.20 0.98 0.62 0.44 0.39 1.21 0.01 0.11 0.12 091 0.97 0.16 0.16 1.05 0.34 099 0.63 0.04 107 35x10™* 0.01
1512746613 1 FCGR2A  0.15 0.14 1.03 0.37 not available monomorphic not imputable 1.03 0.37 - 1.11 4.6 x 1075 0.21
1510919563 1 PTPRC 0.87 0.86 1.15 0.06 0.61 0.62 0.98 0.58 0.76 0.77 0.97 0.79 0.76 0.76 1.01 0.47 0.99 0.58 038 107 1.1x107% 024
1s13119723 4 IL2, IL21 0.15 0.14 1.13 0.92 0.02 0.02 0.90 0.37 monomorphic not imputable 111 0.90 048 090 9.0x10°° 0.14
1s11594656 10  IL2RA 0.76 0.73 1.19 0.01 0.96 0.96 1.08 037 0.96 0.96 1.16 0.04 low information score 1.17  0.001 0.89 1.09 85x10°° 0.88
1s2793108 10  ZEB1 0.59 0.60 0.98 0.62 0.38 0.40 0.92 083 0.58 0.55 1.11 0.001 0.54 0.56 0.91 0.87 1.05 0.03 0.03 107 9.4x10°° 039
1s540386 11  TRAF6 0.14 0.14 0.98 0.41 0.74 0.75 0.99 046 097 097 1.07 0.29 0.96 0.95 1.10 0.31 1.01 0.42 090 1.10 6.5x10°° 0.15
1s3184504 12 SH2B3 0.52 0.48 1.18 0.004 0.08 0.08 0.99 0.53 monomorphic not imputable 1.15  0.008 031 1.09 3.9x 1077 0.07
1s8045689 16  CDI19, 0.28 0.22 1.40 2.57 0.05 0.04 1.26 0.12 0.08 0.08 1.03 0.28 0.11 0.09 1.22 008 116 14x10™* 0.01 110 73 x10°® 0.05
NFATC2IP x 107°

152872507 17 IKZF3 0.56 0.57 0.96 0.25 0.71 0.76 0.79 0.006 0.72 0.74 091 0.003 0.72 0.76 0.82 0.02 090 53x10° 026 091 1.7x10°° 0.74
1s11203203 21  UBASH3A 0.39 0.36 1.12 0.04 0.17 0.16 1.14 0.12 0.04 0.04 0.99 0.57 0.04 0.03 1.35 0.09 1.09 0.03 044 109 7.7 x 1077 0.59
1s5754217 22 UBE2L3  0.20 0.19 1.04 0.31 0.05 0.06 0.85 0.80 0.48 0.47 1.03 0.15 0.45 0.43 1.07 0.22 1.03 0.11 075 107 12x10™* 094

We list results for 13 SNPs that were previously suggestive in two GWAS meta-analysis studies but that had not yet reached the conservative genome-wide significance level at p < 5 x 107. For each of the sample collections,
we report the case-control allele frequencies of allele A1 (as denoted in Table 2), the odds ratio (OR) with respect to A1, and the one-tailed p value (p*) with respect to the directionality in the previous meta-analysis results in
Table 1. We then perform a multi-ethnic replication for the independent replication samples as listed in this table, as well as a joint analysis of all independent collections available (Z scores for each sample collection are
available in Table S3). Underlined p values denote replication below the study-wide Bonferroni corrected p value threshold (<0.0038). p values in bold denote replication below the genome-wide significance threshold
(p < 5 % 1078). Two out of the 13 SNPs genotyped in the European ancestry replication dataset were proxies of the GWAS SNPs (rs793096 at ZEBT [LD with rs2793108 r> = 0.82, D’ = 1] and rs9621715 at UBE2L3 [LD
with rs5754217 r? = 1, D’ = 1]). For the African American dataset, rs9621715 at UBE2L3 and rs793096 at ZEB1 were genotyped. For the Korean dataset, the proxies used were rs1046864 at TRAF6 and rs1932435 at PTPRC.
Three SNPs (rs12746613 at FCGR2A, rs13119723 at IL2-21, and rs3184504 at SH2B3) could not be imputed because these SNPs were monomorphic in the reference panel, and one SNP (rs11594656 at IL2RA) had an
information score of 0.004 and was excluded from further analysis in this dataset. The following abbreviations are used: Chr., chromosomal region; and Q, Cochran’s Q test for heterogeneity of odds ratios.
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Figure 1. Associations between the 1p36 Locus and Rheumatoid Arthritis Risk across Populations

Regional association plots show strength of association (—log;op) versus chromosomal position (kb) for all SNPs across 500 kb regions
centered on the newly validated SNPs (labeled). p values are plotted with diamonds for all SNPs and are shaded white to red by the degree
of LD (1% see inset) with the SNP (larger red diamond) under investigation in the current study. Local recombination rates estimated from
HapMap CEU (cM/Mb, blue line) are plotted against the secondary y axis and show recombination hotspots across the region. Labeled
green arrows below the plots indicate genes and their orientations.

(A) Associations from the European population.

(B) Associations from the Japanese population.

(C) Meta-analysis of European and Japanese populations.

(D) Forest plot showing association across all available studies. The point estimate of the odds ratio (OR) and 95% confidence intervals
(ClIs) are shown for each individual study included in the meta-analysis, as well as for a combined analysis (green) across the six GWASs
and the previously available replication sample sets, the multiethnic sample sets (blue) novel to this study, and the meta-analysis (red)
across all sample sets.
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Figure 2. Associations between the 17q12 Locus and Rheumatoid Arthritis Risk across Populations
Regional association plots show strength of association (—log;op) versus chromosomal position (kb) for all SNPs across 500 kb regions
centered on the newly validated SNPs (labeled). p values are plotted with diamonds for all SNPs and are shaded white to red by the degree
of LD (r%; see inset) with the SNP (larger red diamond) under investigation in the current study. Local recombination rates estimated from
HapMap CEU (cM/Mb, blue line) are plotted against the secondary y axis and show recombination hotspots across the region. Labeled

green arrows below the plots indicate genes and their orientations.
(A) Associations from the European population.

(B) Associations from the Japanese population.

(C) Associations from the Korean population.

(D) Meta-analysis of European, Japanese, and Korean populations.

(QIN/ND) ©181 UoHEBUIqUIOOSY

(E) Forest plot showing association across all available studies. The point estimate of the odds ratio (OR) and 95% confidence intervals
(CIs) are shown for each individual study included in the meta-analysis as well as for a combined analysis (green) across the six GWASs
and the previously available replication sample sets, the multiethnic sample sets (blue) novel to this study, and the meta-analysis (red)

across all sample sets.
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PLCH2 (MIM 612836), Clorf93, HES5S (MIM 607348), and
TNFRSF14 (MIM 602746). GRAIL picked TNFRSF14 as the
gene most likely to have a causal variant in this region
(PGRralL =2 X 107%), and no other gene scored significantly
at pgraiL < 0.0S. This gene is a member of the TNF (tumor
necrosis factor)-receptor superfamily and is known to bind
to several TRAF (TNF-receptor-associated factors) family
members, which might mediate the signal transduction
pathways that activate the immune response. We then
searched the 1,000 Genomes Project pilot 1 data®* and
catalogued SNPs in high LD with rs3890745 (r* > 0.8).
In exon 15 of MMELI, we found one missense SNP
(1s3748816; 1? = 0.93, D’ = 1; methionine to threonine)
that was in LD with rs3890745. PolyPhen2*° predicted
that this SNP amino acid change would have benign
consequences on the MMEL1 protein. Finally, we used
a publicly available genome browser to search for cis-acting
expression quantitative trait loci (eQTL) on genes in the
region. This SNP is a strong eQTL for MMEL1 (1.03 X
10729 in a large dataset of peripheral-blood mononuclear
cells (PBMCs).'® MMEL1 encodes a member of the neutral
endopeptidase (NEP) or membrane metallo-endopeptidase
(MME) family. Family members play important roles in
pain perception, arterial pressure regulation, phosphate
metabolism, and homeostasis. This protein is a type II
transmembrane protein and is thought to be expressed
as a secreted protein. Determining which gene (or genes)
and variants are causal will require functional studies.

We also used GWAS data to fine map the chr17ql2
locus marked by rs2872507. Again, the best SNP from
our original GWAS on Europeans represented the best sig-
nal of association in the GWAS from Japanese and Korean
individuals (Figures 2A-2D). In all three GWASs, the stron-
gest signal of association was with rs2872507. After con-
ditional analysis, no additional signal remains (Figure S1B).
Thus, we conclude that the causal variant is in strong LD
with 1s2872507.

We performed the following three similar bioinformatic
analyses to identify the most likely causal variant and gene
on which it is located at the rs2872507 locus at chr17q12.
(1) This region contains 17 genes (Figure 2), of which
IKZF3 [MIM 606221] is the best biological candidate gene
identified by GRAIL (pgrar. = 2 X 107°), and no other
gene scored significantly at pgran, < 0.05. IKZF3 (IKAROS
family zinc finger 3, also known as Aiolos) has an impor-
tant function in the regulation and proliferation of
B cells.*" Mice lacking IKZF3 develop symptoms of human
systemic lupus erythematosus (SLE), indicating that
normal IKZF3 function might be necessary for maintain-
ing immune homeostasis and suppressing the develop-
ment of systemic autoimmune disease.>? (2) There were
three missense SNPs in LD with rs2872507, two of
which are in GSDMB (Gasdermin B [MIM 611221]). One
(rs2305479) of these two is predicted by PolyPhen2 to be
probably damaging as a result of an amino acid change
from Glycine to Arginine, and the other (1s2305480) is pre-
dicted to be benign. GSDMB encodes a member of the gas-

dermin-domain-containing protein family and is highly
expressed in the thymus, lymph nodes, and CD4" and
CD8" T cells. A third missense SNP is rs11557467 and is
located in exon 4 of ZPBP2 (zona pellucida binding pro-
tein 2), which is not a strong biological candidate gene
for RA. (3) This SNP is a strong eQTL for ORMDL3 [MIM
610075] and possibly other genes in the region.** A recent
paper investigated the potential functional consequences
of the SNPs in the LD block and identified a proxy for
our top hit (rs12936231, r* 0.91, D’ = 1) as disrupting
CTCF binding and nucleosome occupancy.®® As with the
chrlp36 region, further functional studies are required
for identifying the causal variant in the region.

Our results are consistent with similar genetic architec-
ture across the ethnic groups (Figure S2). In particular, we
provide evidence of shared risk alleles among Japanese
and European individuals, given that these represent the
ethnic groups with the largest number of RA cases and
controls in our study (Tables 1 and 2). For each of the mul-
tiethnic replication sample sets, we used Fisher’s method
to test whether there was a uniform distribution of the
p value across the 13 SNPs genotyped. In all datasets, we
observed significantly higher association in individuals of
European ancestry (pgup pu = 1.25 X 107%; pys = 0.01,
Praran = 3.45E°%; prorea = 0.04). Within each of the data-
sets, we observed that six SNPs in the EHR-EU dataset,
two SNPs in the AA dataset, four SNPs in the Japanese
dataset, and one SNP in the Korean dataset were significant
(p < 0.05 [corresponding to Z > 1.65]), whereas no more
than 1 might be expected by chance alone (Figure S3).
A summary of the power estimates for each of the sample
sets is presented in Figure S4.

We also highlight apparent differences across ethnic
groups. First, there are three SNPs (1512746613 at FCGR2A,
rs13119723 at IL2-IL21, and rs3184504 at SH2B3) that are
monomorphic among individuals of Asian ancestry but
that are polymorphic among individuals of European
ancestry. This limits our ability to detect a true positive
association in a multiethnic study design and also explains
why we were not able to impute this SNP in the Korean
GWAS. One SNP in particular is rs3184504 (on chrl2
near SH2B3), which replicates with p = 0.004 among indi-
viduals of European ancestry. This same SNP was recently
found to be associated with celiac and RA3. There is also
evidence of heterogeneity in the association at loci that
failed to reach combined p < 5 x 107® (e.g., 152793108
and r1s7543174). It is possible that heterogeneity is
explained by clinical variability across ethnic groups, dif-
ferent patterns of LD between the genotyped marker SNP
(Figures SS and S6) and the underlying causal variant
among ethnic populations, or the existence of different
causal variants in individuals of different ethnic back-
grounds. In these instances, a multiethnic study design
does not result in a gain in power. It is also possible that
these do not represent true positive associations.

A limitation of our study is highlighted by our efforts to
find the causal variant and the gene on which it is located
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at the two loci (chr17q12 and 1p36) that reached genome-
wide significance. We used GWAS data and 1,000 Genomes
Project data to identify a set of equivalent SNPs, but we
were not able to pinpoint the causal variant. Similarly,
our bioinformatic analyses implicated more than one
gene per locus as the gene most likely influenced by the
causal variant. Resolving both issues will require detailed
functional studies.

Our study has implications beyond the identification of
two RA risk loci. It is increasingly recognized that common
alleles of small effect can explain a substantial proportion
of the hidden heritability of complex traits,>** including
the risk of developing RA (Stahl et al., in press). Obtaining
sufficient power for identifying these risk alleles will
require very large sample sizes. Our study demonstrates
that combining GWASs across multiple ethnic groups
represents an effective strategy for discovering RA risk loci.

Supplemental Data

Supplemental Data include six figures and three tables and can be
found with this article online at http://www.cell.com/AJHG.
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