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Soumya Raychaudhuri,1,2,4 Jan Freudenberg,8 Yuta Kochi,6,7 Nikolaos A. Patsopoulos,2,3,4

Namrata Gupta,4 CLEAR investigators,16 Cynthia Sandor,1,2,4 So-Young Bang,9 Hye-Soon Lee,9

Leonid Padyukov,10 Akari Suzuki,6 Kathy Siminovitch,11,12,13 Jane Worthington,14 Peter K. Gregersen,8

Laura B. Hughes,15 Richard J. Reynolds,15 S. Louis Bridges, Jr.,15 Sang-Cheol Bae,9

Kazuhiko Yamamoto,6,7 and Robert M. Plenge1,2,4,*

We have previously shown that rheumatoid arthritis (RA) risk alleles overlap between different ethnic groups. Here, we utilize a multi-

ethnic approach to show that we can effectively discover RA risk alleles. Thirteen putatively associated SNPs that had not yet exceeded

genome-wide significance (p < 5 3 10�8) in our previous RA genome-wide association study (GWAS) were analyzed in independent

sample sets consisting of 4,366 cases and 17,765 controls of European, African American, and East Asian ancestry. Additionally, we con-

ducted an overall association test across all 65,833 samples (a GWAS meta-analysis plus the replication samples). Of the 13 SNPs

investigated, four were significantly below the study-wide Bonferroni corrected p value threshold (p < 0.0038) in the replication

samples. Two SNPs (rs3890745 at the 1p36 locus [p ¼ 2.3 3 10�12] and rs2872507 at the 17q12 locus [p ¼ 1.7 3 10�9]) surpassed

genome-wide significance in all 16,659 RA cases and 49,174 controls combined. We used available GWAS data to fine map these two

loci in Europeans and East Asians, and we found that the same allele conferred risk in both ethnic groups. A series of bioinformatic

analyses identified TNFRSF14-MMEL1 at the 1p36 locus and IKZF3-ORMDL3-GSDMB at the 17q12 locus as the genes most likely associ-

ated with RA. These findings demonstrate empirically that amultiethnic approach is an effective strategy for discovering RA risk loci, and

they suggest that combining GWASs across ethnic groups represents an efficient strategy for gaining statistical power.
Rheumatoid arthritis (RA [MIM 180300]) is characterized

by chronic inflammation and destruction of the synovial

joints, the latter of which leads to progressive damage

and disability. Both environmental and genetic factors

are involved in the etiology of RA, and there is an esti-

mated genetic component between 50% and 60%.1 Candi-

date-gene studies and genome-wide association studies

(GWASs) have begun to unravel the complex genetic

architecture of RA, for which >35 genetic loci have been

identified to date.2–6 All of these loci have met a stringent

genome-wide significance threshold (p < 5 3 10�8).

However, the SNPs identified individually increase risk in

small increments and collectively only explain ~18% of

the overall genetic heritability.2 One of the explanations

for this ‘‘missing heritability’’ is that many more common

risk alleles remain to be discovered in larger studies.

The majority of RA risk alleles have been identified and

validated in patients who are of European ancestry and

are seropositive for disease-specific autoantibodies (either

anticitrullinated protein antibodies [ACPAs] or rheumatoid

factor [RF]). Several studies have shown that validated RA
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risk alleles contribute to risk in other ethnic groups,

including patients of African, Hispanic, and Asian

ancestry.7–10 Although two GWASs have been performed

in individuals of East Asian ancestry (Japanese and

Korean),7,9 no study has integrated data in a multiethnic

fashion to discover new RA risk loci. Indeed, there has

been debate in the literature as to whether common vari-

ants discovered by GWASs will be ethnic specific or con-

tribute to risk across all ethnic groups, not only in RA but

also more generally in other complex traits.11 As proof of

concept that integrating multiethnic data is an effective

strategy for discovering RA risk loci, we used a multiethnic

replication panel to test 13 SNPs that did not reach

genome-wide significance (p < 5 3 10�8) in our pre-

vious GWAS.

The initial GWAS meta-analysis used as a starting point

for the current study has been described in greater detail

elsewhere.2 In brief, the GWAS consisted of 5,505 RA cases

and 22,603 controls, and follow-up SNP genotyping was

performed in a replication collection of 6,768 cases and

8,806 controls of European ancestry (Table S1, available
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Table 1. Previous Association of 13 SNPs in RA GWAS Meta-Analysis and Replication Sample Sets of European Ancestry

SNP Characteristicsa Allelesb GWASc
Previous
Replicationd Previous Joint Meta-Analysise

SNP Chr. Position (bp) Genes A1 A2 Risk OR p OR pone-tailed OR pJoint Q

rs3890745* 1p36 2,543,484 TNFRSF14,
MMEL1

T C T 1.13 1.14 3 10�6 1.08 0.069 1.12 5.28 3 10�7 0.23

rs7543174 1q21 152,794,296 IL6R C T C 1.14 6.00 3 10�5 1.07 0.012 1.10 1.01 3 10�5 0.10

rs12746613* 1q23 159,733,666 FCGR2A T C T 1.13 4.84 3 10�4 1.10 0.011 1.12 3.34 3 10�5 0.19

rs10919563* 1q32 196,967,065 PTPRC G A G 1.15 1.80 3 10�4 1.11 0.005 1.13 6.27 3 10�6 0.87

rs13119723 4q27 123,437,763 IL2, IL21 G A A 0.89 1.03 3 10�3 0.87 6.75
3 10�5

0.88 5.48 3 10�7 0.46

rs11594656 10p15 6,162,015 IL2RA T A T 1.10 8.96 3 10�4 1.05 0.037 1.08 0.0003 0.90

rs2793108 10p11 31,419,111 ZEB1 T C T 1.07 5.01 3 10�3 1.08 0.001 1.07 3.98 3 10�5 0.82

rs540386* 11p12 36,481,869 TRAF6 C T C 1.14 1.56 3 10�4 1.09 0.013 1.11 1.69 3 10�5 0.09

rs3184504 12q24 110,368,991 SH2B3 T C T 1.07 2.81 3 10�3 1.09 2.48
3 10�4

1.08 4.68 3 10�6 0.06

rs8045689 16p11 28,895,770 CD19,
NFATC2IP

C T C 1.14 5.35 3 10�5 1.06 0.014 1.09 2.45 3 10�5 0.35

rs2872507 17q12 35,294,289 IKZF3,
ORMDL3,
GSDMB

G A A 0.92 1.66 3 10�4 0.93 0.002 0.92 2.87 3 10�6 0.83

rs11203203 21q22 42,709,255 UBASH3A A G A 1.11 3.14 3 10�5 1.07 0.017 1.09 4.64 3 10�6 0.49

rs5754217 22q11 20,269,675 UBE2L3 T G T 1.10 1.24 3 10�3 1.07 0.010 1.09 7.98 3 10�5 0.96

We list results of 13 SNPs that were previously suggestive in two GWAS meta-analysis studies but that had not yet reached the conservative genome-wide signif-
icance level at p < 5 3 10�8. All odds ratios (ORs) are reported with respect to allele A1. The following abbreviations are used: Chr., chromosomal region; and Q,
Cochran’s Q test for heterogeneity of odds ratios across all sample collections.
aSNPs marked by an asterisk were suggestive in Raychaudhuri et al.,6 and all remaining SNPs were suggestive in Stahl et al.2 Chromosome and base-pair positions
are with respect to the UCSC HG18 build.
bAlleles at each SNP (A1 and A2) and the allele that was previously identified as the risk allele (Risk).
cResults from a recently performed GWAS meta-analysis incorporating principal components for the correction of population stratification.4
dResults from previous replication efforts as part of Raychaudhuri et al.6 and Stahl et al.2
eResults of the meta-analysis (performed with the inverse-variance method of meta-analysis) of all available datasets.17
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online). Table 1 displays a summary of the SNPs from

this study and suggestive evidence of association, which

we defined as SNPs for which pGWAS % 0.005 and

preplication % 0.05 but which did not reach poverall < 5 3

10�8 in all samples combined. We included one SNP,

rs3890745 at the 1p36 locus, for which preplication ¼
0.069 from this study because it had previously demon-

strated suggestive evidence of replication,6 but it had not

yet reached poverall < 5 3 10�8 in all samples combined.

The purpose of the current study is to test these 13 puta-

tively RA-associated SNPs in an independent, multiethnic

collection of RA case-control samples and provide defini-

tive evidence (poverall < 5 3 10�8) of association with

RA risk.

For the multiethnic replication study described herein,

we used an independent collection of 4,366 RA cases and

17,765 controls (Table 2). All RA patients satisfied interna-

tional criteria for the diagnosis of RA. The replication

samples of European ancestry were derived from a study

via electronic health records (EHR).8 A total of 981

ACPAþ cases and 2,048 controls of European genetic an-

cestry were genotyped with Sequenom iPLEX at the Broad

Institute via methods previously described.8 Because these
2 The American Journal of Human Genetics 90, 1–9, March 9, 2012
RA patients were recruited from the same geographic

region as samples from one of our GWASs, we used 129

SNPs that overlapped between the GWAS and the replica-

tion study to remove duplicate individuals. Samples in

which the proportion of alleles shared with an identity

by state of 1 were excluded from the EHR replication data-

set, leaving 711 ACPAþ cases and 1,968 controls. The total

genotyping rate across the 13 SNPs in these individuals

was 97%. The African American sample set consisted of

440 seropositive cases (RFþ or ACPAþ) from the CLEAR

(Consortium for the Longitudinal Evaluation of African

Americans with Early Rheumatoid Arthritis) registry10

and 795 controls (kindly provided by Drs. Robert

P. Kimberly and Jeffrey C. Edberg) from either the CLEAR

Registry or the Birmingham, Alabama area. We genotyped

these samples at the Broad Institute by using Sequenom

iPLEX. The total genotyping rate across the 13 SNPs in

these individuals was 99%. The quality-control (QC)

metrics can be found in Table S2. The Japanese dataset con-

sisted of 2,414 cases and 14,245 controls.12 We generated

genotype data with the Illumina HumanHap610-Quad

BeadChip, and we performed imputation by using

MACH version 1.0.16 and HapMap Phase II JPTþCHB as



Table 2. Characteristics of Samples Included in Our Multiethnic Replication Panel

Study
Geographic
Origin Ethnicity

Case Autoantibody
Status Cases Controls

Genotyping
Platform

Case-Control Stratification
Correction

EHR EU Boston, USA European
Descent

100% ACPAþ 711 1,968 Sequenom iPLEX ancestry informative markers,
PC matching, and self-reported
ancestry

CLEAR Southeastern
USA

African
American

100% RFþ

or ACPAþ
440 795 Sequenom iPLEX ethnically and geographically

matched

The BioBank
Japan Project

Japan Japanese 76% RFþ,
79% ACPAþ

2,414 14,245 Illumina
HumanHap610-Quad
BeadChip

GWAS data PC matching and
self-reported ancestry

Korea Seoul, Korea Korean 96% ACPAþ 801 757 Illumina 550v3/660w GWAS data PC matching

The following abbreviations are used: GWAS, genome-wide association study; and PC, principal components.
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a reference panel (release 24), as previously described.13

The Korean dataset was genotyped with the Illumina

550v3/660w platform, and 1 Mb regional imputation was

performed with BEAGLE and HapMap phase III CHBþJPT

as a reference panel.14 From the Korean dataset, one SNP

(rs3890745) could not be imputed because very few SNPs

passed QC at this locus in this dataset. Table 3 has a

summary of the SNPs used in the multiethnic replication

and includes proxy SNPs used in some sample collections.

To test for association, we obtained odds ratios and con-

fidence intervals from unconditional logistic regression in

each individual dataset as implemented in SNPTEST v215

(for European GWAS sample sets) or PLINK16 (for all re-

maining sample sets). We performed meta-analysis by

using the inverse-variance fixed method17 in R version

2.10 in the following three phases: (1) six GWASs and

previously genotyped sample sets, all of European descent

(Table 1); (2) four multiethnic-replication sample sets

(Table 3); and (3) all 18 available datasets (Table 3).

Heterogeneity-of-odds ratios across all sample collections

were assessed with Cochran’s Q method as implemented

in R. Z scores across each population under study can be

found in Table S3.

Of the 13 previously suggestive SNPs investigated

(Table 1), seven SNPs replicated at p < 0.05 (Table 3).

Four of these (rs3890745 at chr1p36, rs11594656 at

chr10p15, rs8045689 at chr16p11, and rs2872507 at

chr17q12) were significantly below the study-wide Bonfer-

roni corrected p value threshold (p < 0.0038) (Table 3).

Two SNPs, rs3890745 (at chr1p36) and rs2872507 (at

chr17q12), surpassed the genome-wide conservative level

of significance in a joint analysis of the multiethnic repli-

cation sample sets and previous European GWAS and

replication datasets (p ¼ 2.3 3 10�12 and p ¼ 1.7 3 10�9,

respectively) consisting of 16,659 cases and 49,174 con-

trols. We note that one SNP, rs8045689, had a lower geno-

type call rate (90.1%) in the European replication cohort

(Table S2) and had evidence of heterogeneity in the multi-

ethnic replication (Table 3).

All SNPs with p < 0.05 in replication have been impli-

cated in other immune-mediated diseases, supporting the

idea that they represent true positive associations in RA.
T

For the two SNPs that reached genome-wide significance,

both are associated with other autoimmune diseases

(rs3890745 at chr1p36—Ulcerative Colitis [UC18 (MIM

605225)] and Celiac disease19 [MIM 212750]; rs2872507

at chr17q12—Crohn disease20 [MIM 26600], UC21 [MIM

26600], type 1 diabetes22 [T1D (MIM 222100)], asthma23

[MIM 600807], and primary biliary cirrhosis24 [MIM

109720]). SNPs at the chr16p11 (rs8045689, combined

p ¼ 7.3 3 10�8) and 10p15 (rs11594656, combined p ¼
8.46 3 10�6) loci have previously been associated with

T1D,25 and the same risk allele predisposes to both RA

and T1D. Several SNPs for which results were replicated

at p < 0.05 in our study are associated with immune-

related diseases: rs11203203 at chr21q22 (celiac disease),3

rs3184504 at chr12q24 (celiac disease and T1D),26,27 and

rs2793108 at chr10p11 (T1D) (May 2009 release of the

online T1D database22).

We used available GWAS data to fine map the two loci

that reached genome-wide significance (Figures 1 and 2).

At the chr1p36 locus, the best SNP, rs3890745, is strongly

associated with RA risk in both European and Japanese

datasets (Figures 1A–1C). This SNP was not genotyped or

imputed into our Korean dataset because of the low-

density of genotyped SNPs in the region. In both GWAS

datasets, this SNP (or SNPs in high linkage disequilibrium

[LD]) represents the strongest signal of association. After

conditional SNPTEST analysis, no additional signal re-

mains (Figure S1A). Thus, we conclude that the causal

variant is in strong LD with rs3890745.

In an attempt to identify the most likely associated gene

and any potential causal variants in LDwith rs3890745, we

performed a series of bioinformatic analyses. First, we

used GRAIL28 to search the region for genes that were

most closely related to other established RA risk loci. Using

the GRAIL default parameters (CEU [Utah residents with

ancestry from northern and western Europe from the

CEPH collection] HapMap release 21; PubMed text [Dec.

2006), gene size correction ‘‘off’’), we used a set of 36 vali-

dated RA risk-associated SNPs as ‘‘seed regions’’ (selected

from Stahl et al.2), and we used our 13 suggestive SNPs as

‘‘query regions.’’ The following six genes are in the region

of LD: PANK4 (MIM 606162), MMEL1 (MIM 18030),
he American Journal of Human Genetics 90, 1–9, March 9, 2012 3



Table 3. Independent Replication from Populations of Diverse Ancestry Including Europeans, African Americans, and East Asians

Europeans African Americans Japanese Koreans Multiethnic Replication Joint Meta-Analysis

SNP Chr. Locus Case Control OR p* Case Control OR p* Case Control OR p* Case Control OR p* OR p* Q OR pJoint Q

rs3890745 1 TNFRSF14 0.71 0.67 1.22 0.002 0.49 0.46 1.14 0.07 0.53 0.50 1.13 5.34
3 10�5

not imputable 1.14 4.0 3 10�7 0.60 1.13 2.3 3 10�12 0.37

rs7543174 1 IL6R 0.20 0.20 0.98 0.62 0.44 0.39 1.21 0.01 0.11 0.12 0.91 0.97 0.16 0.16 1.05 0.34 0.99 0.63 0.04 1.07 3.5 3 10�4 0.01

rs12746613 1 FCGR2A 0.15 0.14 1.03 0.37 not available monomorphic not imputable 1.03 0.37 - 1.11 4.6 3 10�5 0.21

rs10919563 1 PTPRC 0.87 0.86 1.15 0.06 0.61 0.62 0.98 0.58 0.76 0.77 0.97 0.79 0.76 0.76 1.01 0.47 0.99 0.58 0.38 1.07 1.1 3 10�3 0.24

rs13119723 4 IL2, IL21 0.15 0.14 1.13 0.92 0.02 0.02 0.90 0.37 monomorphic not imputable 1.11 0.90 0.48 0.90 9.0 3 10�6 0.14

rs11594656 10 IL2RA 0.76 0.73 1.19 0.01 0.96 0.96 1.08 0.37 0.96 0.96 1.16 0.04 low information score 1.17 0.001 0.89 1.09 8.5 3 10�6 0.88

rs2793108 10 ZEB1 0.59 0.60 0.98 0.62 0.38 0.40 0.92 0.83 0.58 0.55 1.11 0.001 0.54 0.56 0.91 0.87 1.05 0.03 0.03 1.07 9.4 3 10�6 0.39

rs540386 11 TRAF6 0.14 0.14 0.98 0.41 0.74 0.75 0.99 0.46 0.97 0.97 1.07 0.29 0.96 0.95 1.10 0.31 1.01 0.42 0.90 1.10 6.5 3 10�5 0.15

rs3184504 12 SH2B3 0.52 0.48 1.18 0.004 0.08 0.08 0.99 0.53 monomorphic not imputable 1.15 0.008 0.31 1.09 3.9 3 10�7 0.07

rs8045689 16 CD19,
NFATC2IP

0.28 0.22 1.40 2.57
3 10�6

0.05 0.04 1.26 0.12 0.08 0.08 1.03 0.28 0.11 0.09 1.22 0.08 1.16 1.4 3 10�4 0.01 1.10 7.3 3 10�8 0.05

rs2872507 17 IKZF3 0.56 0.57 0.96 0.25 0.71 0.76 0.79 0.006 0.72 0.74 0.91 0.003 0.72 0.76 0.82 0.02 0.90 5.3 3 10�5 0.26 0.91 1.7 3 10�9 0.74

rs11203203 21 UBASH3A 0.39 0.36 1.12 0.04 0.17 0.16 1.14 0.12 0.04 0.04 0.99 0.57 0.04 0.03 1.35 0.09 1.09 0.03 0.44 1.09 7.7 3 10�7 0.59

rs5754217 22 UBE2L3 0.20 0.19 1.04 0.31 0.05 0.06 0.85 0.80 0.48 0.47 1.03 0.15 0.45 0.43 1.07 0.22 1.03 0.11 0.75 1.07 1.2 3 10�4 0.94

We list results for 13 SNPs that were previously suggestive in two GWASmeta-analysis studies but that had not yet reached the conservative genome-wide significance level at p< 53 10�8. For each of the sample collections,
we report the case-control allele frequencies of allele A1 (as denoted in Table 2), the odds ratio (OR) with respect to A1, and the one-tailed p value (p*) with respect to the directionality in the previous meta-analysis results in
Table 1. We then perform a multi-ethnic replication for the independent replication samples as listed in this table, as well as a joint analysis of all independent collections available (Z scores for each sample collection are
available in Table S3). Underlined p values denote replication below the study-wide Bonferroni corrected p value threshold (<0.0038). p values in bold denote replication below the genome-wide significance threshold
(p < 5 3 10�8). Two out of the 13 SNPs genotyped in the European ancestry replication dataset were proxies of the GWAS SNPs (rs793096 at ZEB1 [LD with rs2793108 r2 ¼ 0.82, D’ ¼ 1] and rs9621715 at UBE2L3 [LD
with rs5754217 r2 ¼ 1, D’ ¼ 1]). For the African American dataset, rs9621715 at UBE2L3 and rs793096 at ZEB1 were genotyped. For the Korean dataset, the proxies used were rs1046864 at TRAF6 and rs1932435 at PTPRC.
Three SNPs (rs12746613 at FCGR2A, rs13119723 at IL2-21, and rs3184504 at SH2B3) could not be imputed because these SNPs were monomorphic in the reference panel, and one SNP (rs11594656 at IL2RA) had an
information score of 0.004 and was excluded from further analysis in this dataset. The following abbreviations are used: Chr., chromosomal region; and Q, Cochran’s Q test for heterogeneity of odds ratios.
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Figure 1. Associations between the 1p36 Locus and Rheumatoid Arthritis Risk across Populations
Regional association plots show strength of association (�log10p) versus chromosomal position (kb) for all SNPs across 500 kb regions
centered on the newly validated SNPs (labeled). p values are plotted with diamonds for all SNPs and are shaded white to red by the degree
of LD (r2; see inset) with the SNP (larger red diamond) under investigation in the current study. Local recombination rates estimated from
HapMap CEU (cM/Mb, blue line) are plotted against the secondary y axis and show recombination hotspots across the region. Labeled
green arrows below the plots indicate genes and their orientations.
(A) Associations from the European population.
(B) Associations from the Japanese population.
(C) Meta-analysis of European and Japanese populations.
(D) Forest plot showing association across all available studies. The point estimate of the odds ratio (OR) and 95% confidence intervals
(CIs) are shown for each individual study included in the meta-analysis, as well as for a combined analysis (green) across the six GWASs
and the previously available replication sample sets, the multiethnic sample sets (blue) novel to this study, and the meta-analysis (red)
across all sample sets.
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Figure 2. Associations between the 17q12 Locus and Rheumatoid Arthritis Risk across Populations
Regional association plots show strength of association (�log10p) versus chromosomal position (kb) for all SNPs across 500 kb regions
centered on the newly validated SNPs (labeled). p values are plotted with diamonds for all SNPs and are shaded white to red by the degree
of LD (r2; see inset) with the SNP (larger red diamond) under investigation in the current study. Local recombination rates estimated from
HapMap CEU (cM/Mb, blue line) are plotted against the secondary y axis and show recombination hotspots across the region. Labeled
green arrows below the plots indicate genes and their orientations.
(A) Associations from the European population.
(B) Associations from the Japanese population.
(C) Associations from the Korean population.
(D) Meta-analysis of European, Japanese, and Korean populations.
(E) Forest plot showing association across all available studies. The point estimate of the odds ratio (OR) and 95% confidence intervals
(CIs) are shown for each individual study included in the meta-analysis as well as for a combined analysis (green) across the six GWASs
and the previously available replication sample sets, the multiethnic sample sets (blue) novel to this study, and the meta-analysis (red)
across all sample sets.
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PLCH2 (MIM 612836), C1orf93, HES5 (MIM 607348), and

TNFRSF14 (MIM 602746). GRAIL picked TNFRSF14 as the

gene most likely to have a causal variant in this region

(pGRAIL ¼ 23 10�6), and no other gene scored significantly

at pGRAIL < 0.05. This gene is a member of the TNF (tumor

necrosis factor)-receptor superfamily and is known to bind

to several TRAF (TNF-receptor-associated factors) family

members, which might mediate the signal transduction

pathways that activate the immune response. We then

searched the 1,000 Genomes Project pilot 1 data29 and

catalogued SNPs in high LD with rs3890745 (r2 R 0.8).

In exon 15 of MMEL1, we found one missense SNP

(rs3748816; r2 ¼ 0.93, D’ ¼ 1; methionine to threonine)

that was in LD with rs3890745. PolyPhen230 predicted

that this SNP amino acid change would have benign

consequences on the MMEL1 protein. Finally, we used

a publicly available genome browser to search for cis-acting

expression quantitative trait loci (eQTL) on genes in the

region. This SNP is a strong eQTL for MMEL1 (1.03 3

10�20) in a large dataset of peripheral-blood mononuclear

cells (PBMCs).19 MMEL1 encodes a member of the neutral

endopeptidase (NEP) or membrane metallo-endopeptidase

(MME) family. Family members play important roles in

pain perception, arterial pressure regulation, phosphate

metabolism, and homeostasis. This protein is a type II

transmembrane protein and is thought to be expressed

as a secreted protein. Determining which gene (or genes)

and variants are causal will require functional studies.

We also used GWAS data to fine map the chr17q12

locus marked by rs2872507. Again, the best SNP from

our original GWAS on Europeans represented the best sig-

nal of association in the GWAS from Japanese and Korean

individuals (Figures 2A–2D). In all three GWASs, the stron-

gest signal of association was with rs2872507. After con-

ditional analysis, no additional signal remains (Figure S1B).

Thus, we conclude that the causal variant is in strong LD

with rs2872507.

We performed the following three similar bioinformatic

analyses to identify the most likely causal variant and gene

on which it is located at the rs2872507 locus at chr17q12.

(1) This region contains 17 genes (Figure 2), of which

IKZF3 [MIM 606221] is the best biological candidate gene

identified by GRAIL (pGRAIL ¼ 2 3 10�5), and no other

gene scored significantly at pGRAIL < 0.05. IKZF3 (IKAROS

family zinc finger 3, also known as Aiolos) has an impor-

tant function in the regulation and proliferation of

B cells.31 Mice lacking IKZF3 develop symptoms of human

systemic lupus erythematosus (SLE), indicating that

normal IKZF3 function might be necessary for maintain-

ing immune homeostasis and suppressing the develop-

ment of systemic autoimmune disease.32 (2) There were

three missense SNPs in LD with rs2872507, two of

which are in GSDMB (Gasdermin B [MIM 611221]). One

(rs2305479) of these two is predicted by PolyPhen2 to be

probably damaging as a result of an amino acid change

fromGlycine to Arginine, and the other (rs2305480) is pre-

dicted to be benign. GSDMB encodes a member of the gas-
T

dermin-domain-containing protein family and is highly

expressed in the thymus, lymph nodes, and CD4þ and

CD8þ T cells. A third missense SNP is rs11557467 and is

located in exon 4 of ZPBP2 (zona pellucida binding pro-

tein 2), which is not a strong biological candidate gene

for RA. (3) This SNP is a strong eQTL for ORMDL3 [MIM

610075] and possibly other genes in the region.33 A recent

paper investigated the potential functional consequences

of the SNPs in the LD block and identified a proxy for

our top hit (rs12936231, r2 0.91, D’ ¼ 1) as disrupting

CTCF binding and nucleosome occupancy.33 As with the

chr1p36 region, further functional studies are required

for identifying the causal variant in the region.

Our results are consistent with similar genetic architec-

ture across the ethnic groups (Figure S2). In particular, we

provide evidence of shared risk alleles among Japanese

and European individuals, given that these represent the

ethnic groups with the largest number of RA cases and

controls in our study (Tables 1 and 2). For each of the mul-

tiethnic replication sample sets, we used Fisher’s method

to test whether there was a uniform distribution of the

p value across the 13 SNPs genotyped. In all datasets, we

observed significantly higher association in individuals of

European ancestry (pEHR_EU ¼ 1.25 3 10�07; pAA ¼ 0.01,

pJAPAN ¼ 3.45E-06; pKOREA ¼ 0.04). Within each of the data-

sets, we observed that six SNPs in the EHR-EU dataset,

two SNPs in the AA dataset, four SNPs in the Japanese

dataset, and one SNP in the Korean dataset were significant

(p < 0.05 [corresponding to Z > 1.65]), whereas no more

than 1 might be expected by chance alone (Figure S3).

A summary of the power estimates for each of the sample

sets is presented in Figure S4.

We also highlight apparent differences across ethnic

groups. First, there are three SNPs (rs12746613 at FCGR2A,

rs13119723 at IL2-IL21, and rs3184504 at SH2B3) that are

monomorphic among individuals of Asian ancestry but

that are polymorphic among individuals of European

ancestry. This limits our ability to detect a true positive

association in a multiethnic study design and also explains

why we were not able to impute this SNP in the Korean

GWAS. One SNP in particular is rs3184504 (on chr12

near SH2B3), which replicates with p ¼ 0.004 among indi-

viduals of European ancestry. This same SNP was recently

found to be associated with celiac and RA3. There is also

evidence of heterogeneity in the association at loci that

failed to reach combined p < 5 3 10�8 (e.g., rs2793108

and rs7543174). It is possible that heterogeneity is

explained by clinical variability across ethnic groups, dif-

ferent patterns of LD between the genotyped marker SNP

(Figures S5 and S6) and the underlying causal variant

among ethnic populations, or the existence of different

causal variants in individuals of different ethnic back-

grounds. In these instances, a multiethnic study design

does not result in a gain in power. It is also possible that

these do not represent true positive associations.

A limitation of our study is highlighted by our efforts to

find the causal variant and the gene on which it is located
he American Journal of Human Genetics 90, 1–9, March 9, 2012 7
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at the two loci (chr17q12 and 1p36) that reached genome-

wide significance.We used GWAS data and 1,000 Genomes

Project data to identify a set of equivalent SNPs, but we

were not able to pinpoint the causal variant. Similarly,

our bioinformatic analyses implicated more than one

gene per locus as the gene most likely influenced by the

causal variant. Resolving both issues will require detailed

functional studies.

Our study has implications beyond the identification of

two RA risk loci. It is increasingly recognized that common

alleles of small effect can explain a substantial proportion

of the hidden heritability of complex traits,34,35 including

the risk of developing RA (Stahl et al., in press). Obtaining

sufficient power for identifying these risk alleles will

require very large sample sizes. Our study demonstrates

that combining GWASs across multiple ethnic groups

represents an effective strategy for discovering RA risk loci.
Supplemental Data

Supplemental Data include six figures and three tables and can be

found with this article online at http://www.cell.com/AJHG.
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