
©
2
0
1
3
 N

a
tu

re
 A

m
e
ri

c
a
, 
In

c
. 
 A

ll
 r

ig
h

ts
 r

e
s
e
rv

e
d

.

NATURE GENETICS VOLUME 45 | NUMBER 4 | APRIL 2013 1

A N A LY S I S

We report a new method to estimate the predictive 
performance of polygenic models for risk prediction and 
assess predictive performance for ten complex traits or 
common diseases. Using estimates of effect-size distribution 
and heritability derived from current studies, we project that 
although 45% of the variance of height has been attributed to 
SNPs, a model trained on one million people may only explain 
33.4% of variance of the trait. Models based on current 
studies allow for identification of 3.0%, 1.1% and 7.0% of 
the populations at twofold or higher than average risk for 
type 2 diabetes, coronary artery disease and prostate cancer, 
respectively. Tripling of sample sizes could elevate these 
percentages to 18.8%, 6.1% and 12.2%, respectively.  
The utility of polygenic models for risk prediction will 
depend on achievable sample sizes for the training data set, 
the underlying genetic architecture and the inclusion of 
information on other risk factors, including family history.

For quite some time, many have predicted that the identification of 
heritable disease susceptibility markers, such as common genetic vari-
ants, could eventually lead to stable models for prediction of risk with 
important individual and public health implications1. Even for a trait 
such as breast cancer, which manifests a modest degree of familial  
aggregation, a polygenic model based on a comprehensive set of 
genetic variants could achieve sufficient discriminatory power and 
thus be applied in targeted screening programs2. To date, genome-
wide association studies (GWAS) have identified thousands of com-
mon susceptibility variants for a wide spectrum of complex traits. 
Recent studies, however, indicate that for most individual traits, the 
loci discovered so far explain only a small fraction of heritability and 
thus, collectively have low predictive power3–11.

Although the phenomenon of ‘missing heritability’12,13 can be 
due to many factors such as an overestimation of heritability itself, 
lack of knowledge of gene-gene and gene-environment interactions 
and contributions from rare variants, there is increasing recognition 
that a substantial part of the heritability comes from a large number 

of common SNPs, each of which individually has too small of an 
effect to be detected at the stringent genome-wide significance level 
with current sample sizes14–18. Recent studies, for example, have  
indicated that although about 200 loci identified through a large 
GWAS involving more than 100,000 subjects can explain only ~10% 
of the variance of adult height6, a set of common SNPs included in 
existing GWAS platforms can explain up to 45% of the variance of 
the same trait16. There have also been similar studies for several other 
complex traits17,19–21.

The gap between estimates of heritability based on known loci and 
those estimated owing to the comprehensive set of common suscepti-
bility variants raises the possibility of substantially improving predic-
tion performance of risk models by using a polygenic approach, one 
that includes many SNPs that do not reach the stringent threshold 
for genome-wide significance. A major factor that determines how 
well such a model can predict a trait value in an independent sample 
will be the sample size of the training data set based on which the 
prediction model can be built. Intuitively, as the sample size for the 
training data set increases, effects of underlying SNPs can be more 
precisely estimated. Corresponding to this, the underlying true poly-
genic model, which harnesses the full predictive power associated 
with total heritability associated with the SNPs, will be more accu-
rately approximated.

In this report, we measure the ability of models based on current 
as well as future GWAS to improve the prediction of individual traits.  
We develop a new theoretical framework that characterizes the 
relationship between sample size and predictive performance of a 
polygenic model based on the number and distribution of effect sizes 
for the underlying susceptibility SNPs and the optimal balance of 
type I and type II error associated with the underlying criterion of 
SNP selection. Based on this, we provide a realistic assessment of the 
predictive performance of a polygenic model for each of ten complex 
traits, namely, the quantitative traits height, body mass index (BMI), 
total cholesterol, high-density lipoprotein (HDL) and low-density 
lipoprotein (LDL), and the disease traits Crohn’s disease, type 1 dia-
betes (T1D), type 2 diabetes (T2D), coronary artery disease (CAD) 
and prostate cancer. We used a range of effect-size distributions that 
are consistent with both known discoveries, 412 in total, reported 
from the largest GWAS of these traits and recent estimates of the 
‘narrow-sense’ heritability, that is, the total heritability of the traits 
attributable to additive effects of common SNPs.

The results provide several insights into the predictive ability of 
polygenic models based on existing GWAS, the marginal utility of 
an increase in sample size, the sample-size threshold beyond which 
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the predictive ability of the models may reach a plateau, the optimal 
threshold for SNP selection, and the joint utility of family history 
information and polygenic risks. The general theoretical framework 
we provide can be used to make projections for the predictive utility of 
different polygenic model–building strategies that may use alternate 
statistical algorithms and/or could incorporate other types of effects, 
such as those due to gene-gene interactions and rare variants.

RESULTS
Throughout, we assess the predictive performance of a model based 
on its predictive correlation coefficient (PCC), which, for a continu-
ous outcome, is equivalent to the Pearson’s correlation coefficient 
between true and predicted outcomes for the underlying popula-
tion of subjects. For a binary disease outcome, we show that PCC 
has a one-to-one mathematical correspondence to the area under 
the curve (AUC) statistics and other standard measures for dis-
criminatory performance of risk models. In deriving this formula,  
we assumed a simple but popularly used22 model-building algorithm 
in which SNPs are first selected for inclusion in the model depending 
on whether the corresponding individual tests of association achieve 
a specified significance threshold (α) and then a polygenic score is 
built by weighing the selected SNPs based on their estimated regres-
sion coefficients. Details of the underlying models and assumptions 
are available in Online Methods.

The relationship between predictive performance of the model and 
the sample size (N) for the training data set is shown in equation (1)  
in Online Methods, which forms the basis of our analytical calculations.  

Simulation studies confirmed the accuracy 
of this equation (Supplementary Fig. 1).  
According to this formula, the predictive 
performance of a model depends on (i) the 
number of true susceptibility SNPs (M1) 
compared to the total number of SNPs 
under study (M), (ii) the true effect sizes 
(βm values) for the underlying susceptibility  
SNPs, (iii) the chosen significance level 
(α) for SNP selection, (iv) the power of the 
underlying association test to reach that sig-
nificance level, and (v) the expected value 
of the estimated regression coefficients and 
their squared values for the selected SNPs. 
The sample size of the training data set (N) 
influences both the power of the association 
test statistics and the deviations of the esti-
mated regression coefficients from their true 
values (Online Methods). Given an effect-size 
distribution, because the number of under-
lying susceptibility SNPs (M1) determine 
the total variability of the trait explainable 

by the underlying model, equation (1) can be rewritten in terms of  
narrow-sense heritability (hg

2), which is defined for the purpose of this 
report to be the heritability of a trait owing to additive effects of com-
mon tagging SNPs included on current, commercially available SNP 
microarrays (Equation (2) in Online Methods). In all our subsequent 
analyses, we assume that genotyping platforms based on which most 
current GWAS have been conducted to contain approximately on 
average M = 200,000 independent SNPs.

To model a complex trait, we first investigated the predictive per-
formance of polygenic models for adult height. In Figure 1 we show 
that the predictive accuracy of polygenic models greatly depends on the 
distribution of effect sizes even when all distributions result in a total 
heritability of 45% (ref. 16). Predictive performance of the model for all 
sample sizes was the highest when an exponential distribution under-
lies the effect sizes. Predictive performance of the model decreased 
substantially under a two-component, exponential-mixture model, 
which, compared to the exponential model, provided a much better fit 
to the observed effect sizes of the known SNPs by allowing for the pres-
ence of more SNPs, each with smaller effect (Supplementary Table 1).  
Finally, the performance of the model was the lowest under a three-
component exponential-mixture distribution, which allows an even 
larger number of SNPs with smaller effects and produces results that 
are most consistent with the observed discoveries in the GIANT study6 
(Supplementary Table 1). Our methods reproduced results from a 
predictive analysis reported in the GIANT study in which distinct 
polygenic models had been built with different significance thresholds 
for SNP selection, and their predictive performance was empirically 

Table 1 Characteristics of ten complex traits and associated GWAS used in reported analysis

Trait Height BMI TC HDL LDL CD T1D T2D PrCA CAD

hg
2 0.45 0.14 – 0.12 – 0.22 0.30 0.51 0.22 –

Effective sample-size for the largest GWAS 133,000 162,000 100,000 100,000 95,000 25,000 22,000 36,000 28,000 73,000

Number of detected SNPs 108 31 45 35 36 64 30 22 20 21

Heritability explained by detected SNPs 0.066 0.014 0.063 0.046 0.059 0.066 0.053 0.034 0.061 0.024

TC, total cholesterol; CD, Crohn’s disease; PrCA, prostate cancer. Estimates of hg
2, that is, phenotype variability owing to total additive effects of common SNPs, for height,  

BMI, HDL, CD, T1D and T2D are from published studies20,21,35 and hg
2
 for PrCA is based on internal analysis of a new GWAS at the National Cancer Institute involving ~5,000 

cases and 5,000 controls genotyped on Illumina Omni 2.5M platform. For qualitative traits, estimates of hg
2 are shown in the liability-threshold scale. Characteristics of largest 

GWAS and associated discoveries were obtained from published reports6–8,10,36–39. For each trait, an effect-size sample size was calculated for a single-stage study that has 

equivalent power as the original study, taking into account multistage genotyping and selective sampling by family history for PrCA. For height, sample size and reported  

discoveries correspond to only first stage of the GIANT study. The number of discoveries reported accounts for any genomic control adjustment used in the original study.
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Figure 1 PCC for polygenic models and corresponding optimal significance level for SNP selection 

under three models for polygenic architectures for adult height. (a,b) Expected value of PCC2 (a) 

and corresponding optimal significance level (αopt; b) as a function of sample size (N). (c) PCC 

values reported in a predictive analysis of the GIANT study (dashed line) versus corresponding 

theoretical expected values under the three different models. Each model assumes a total of 45% of 

phenotypic variance of adult height can be explained by common SNPs included in standard GWAS 

platforms involving M = 200,000 independent SNPs. Effect-size distribution for susceptibility 

SNPs was assumed to follow an exponential distribution (black line), a mixture of two exponential 

distributions (red line) or a mixture of three exponential distributions (blue line). 
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assessed using independently held out datasets. Our method, when 
applied to the three-component mixture exponential distribution at 
the given sample size of the GIANT study (N = 130,000), provided an 
accurate approximation for the entire profile of the observed predictive 
performance of these polygenic models (Fig. 1).

Equation (1) in Online Methods illustrates the tradeoff between 
specificity and sensitivity of the SNP selection criterion on the pre-
dictive performance of the model. With a more liberal significance 
threshold (α), the PCC value will increase through the power of the 
association tests but will decrease as a function of the underlying  
type I error (α). In Figure 1 we illustrate the optimal threshold for 
SNP selection that would maximize predictive performance of a 
model for adult height. Under both the two- and three-component 
mixture distributions for effect sizes, the optimal significance level 
initially increased with an increase in sample size, then it plateaued 
and subsequently remained constant or decreased slightly. In con-
trast, under the single-exponential distribution that corresponds to 
stronger effect sizes, the optimal significance level becomes more 
stringent as sample size increases.

We next examined the potential predictive performance of poly-
genic models for a variety of traits that include both quantitative 
(BMI, total cholesterol, HDL and LDL) and qualitative pheno-
types (Crohn’s disease, T1D, T2D, CAD and prostate cancer) that 
together demonstrate a spectrum of estimated heritability (Table 1).  

For most traits, we consider a range for the underlying effect-size 
distributions that are in accord with both reported discoveries from 
the largest GWAS and recent estimates of hg

2 (Online Methods and 
Supplementary Tables 2 and 3). For a few traits for which external 
estimates of hg

2 are not available, we considered a range of its values 
within the limits of total heritability and effect-size distributions that 
can produce results consistent with the observed discoveries in the 
largest GWAS.

For all traits, the expected performance of the polygenic models 
built based on current GWAS (sample size = N) can be predicted fairly 
accurately (Figs. 2 and 3). Although it may be possible to improve 
the performance of these models including SNPs that do not achieve 
strict genome-wide significance levels, the models are expected to 
have low to modest predictive power even after optimization of 
the SNP selection criterion (Table 2). As sample sizes of the future  
studies will increase, the projected performance of the models will 
have a wider range, reflecting the uncertainty associated with esti-
mates of heritability. Nevertheless, it is evident that only very large 
sample sizes can substantially improve the performance of the mod-
els, even in some of the best-case scenarios. For prostate cancer, for  
example, although a polygenic model built based on the current larg-
est GWAS can be expected to achieve an AUC statistic of about 63%, 
in the future, a model built based on as many as three times that sam-
ple size is expected to yield an AUC statistic of only 64–70% (Fig. 3). 
For all disease traits except CAD, it appears that the marginal utility of 
additional samples can be quite small after the size of GWAS reaches 
100,000–200,000 subjects. In contrast, for CAD, BMI, and the lipid 
traits total cholesterol and LDL, the performance of predictive models 
may continue to improve gradually over a much wider range of sample 
sizes, as high as 500,000 to one million subjects.
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Figure 2 Expected PCC for polygenic models at optimal significance  

level for SNP selection for four quantitative traits. (a–d) For HDL and BMI, 

range of performance is shown corresponding to estimate of hg
2 (yellow 

line) and associated 95% confidence interval (dark blue region). For LDL 

and total cholesterol, for which direct estimate of hg
2 was not available, 

a range of values were chosen based on constraints imposed by the 

observed discoveries. For all traits, the underlying effect-size distribution 

was assumed to follow a mixture of three exponential distributions, which 

together with hg
2
 was calibrated to explain observed discoveries from the 

largest GWAS (Online Methods). Vertical dotted line corresponds to the 

sample size for the current largest genome-wide scans.
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Figure 3 Expected AUC statistics at optimal significance level for SNP 

selection for five disease traits. (a–f) For all diseases except CAD, range 

of performance is shown corresponding to the estimate of hg
2
 (yellow line) 

and associated 95% confidence intervals (dark blue region). For CAD,  

for which direct estimate of hg
2 was not available, a range of its values were 

chosen based on constraints imposed by the observed discoveries. For 

all traits, the underlying effect-size distribution was assumed to follow a 

mixture of two- or three-exponential distributions, which together with hg
2  

was calibrated to explain observed discoveries from the largest GWAS 

(Online Methods). Vertical dotted line corresponds to the sample size for 

the current largest genome-wide scans.
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Predictive performance of a model strongly depends on the extent 
of heritability of the trait. For any given sample size, more accurate 
prediction is possible for more heritable traits, such as Crohn’s disease 
and T1D, than for less heritable traits such as CAD, prostate cancer 
and T2D, which is in accord with classical estimates of heritability  
based on sibling and twin studies. Accordingly, the ability of the 
models to identify individuals likely to develop the disease among 
high-risk groups varies (Table 3). For example, using models based 
on current GWAS, the proportion of future cases that could be identi-
fied among top 20% of subjects with highest polygenic risk is 71% for 
T1D and about 32% for T2D. If the sample size for a future GWAS 
is tripled, then the proportion would be expected to increase to 75% 
and 48%, respectively. For the three common chronic diseases, the 
proportion of the population that can be identified to have twofold  
or higher risk than an average person ranged from 1.1% (CAD)  
to 7.0% (prostate cancer) for models built based on current sample 
sizes (Supplementary Table 4). If the sample size in future stud-
ies could be tripled, then these proportions could be 6.1% (CAD)  
and 18.8% (T2D).

For all diseases, family history information alone provides low dis-
criminatory ability. However, models that include both family history 
and polygenic scores can perform substantially better than models that 
use polygenic scores alone, especially for rare, highly familial condi-
tions such as Crohn’s disease and T1D. Even if polygenic scores could 
be built in the future based on very large sample sizes (for example,  
sample size = 5N), family history is expected to remain an important 
variable for identifying high-risk subjects (Tables 2 and 3).

DISCUSSION
Our analysis demonstrated that the predictive ability of polygenic 
models depends not only on total heritability but also on the under-
lying effect-size distributions. Effect-size distributions from large 
GWAS suggest that although risk prediction models will continue 
to improve as total sample size increases, the improvement will 
be slow and modest even when common SNPs account for a large 
proportion of heritability of the underlying traits. Our analysis also 
shows that under the most likely effect-size distributions, the opti-
mal significance threshold for selecting SNPs for prediction models 

Table 2 Projected discriminatory performance (AUC statistic) for polygenic risk models

Trait

AUC with  

FH alone

Current  

sample  

size (N) Model

N 3N 5N 10N

α = 10−7 αOPT α = 10−7 αOPT α = 10−7 αOPT α = 10−7 αOPT

CD 0.612 17,000 SNPs 0.71 0.74 0.77 0.82 0.81 0.84 0.84 0.86

SNPs + FH 0.79 0.81 0.83 0.87 0.86 0.89 0.89 0.90

T1D 0.533 16,000 SNPs 0.84 (0.67) 0.84 (0.69) 0.85 (0.71) 0.86 (0.73) 0.86 (0.73) 0.86 (0.75) 0.86 (0.75) 0.87 (0.75)

SNPs + FH 0.94 (0.70) 0.94 (0.71) 0.95 (0.74) 0.96 (0.76) 0.96 (0.76) 0.96 (0.77) 0.96 (0.77) 0.96 (0.78)

T2D 0.595 22,000 SNPs 0.57 0.60 0.62 0.71 0.67 0.76 0.74 0.79

SNPs + FH 0.63 0.66 0.67 0.74 0.71 0.78 0.77 0.81

PrCA 0.552 24,000 SNPs 0.63 0.63 0.64 0.66 0.66 0.69 0.69 0.71

SNPs + FH 0.65 0.66 0.66 0.68 0.68 0.71 0.71 0.73

CAD 0.601 57,000 SNPs 0.58 0.59 0.59–0.60 0.62–0.64 0.61–0.62 0.64–0.67 0.64–0.66 0.67–0.69

SNPs + FH 0.65 0.65 0.66 0.67–0.69 0.66–0.68 0.69–0.71 0.68–0.71 0.71–0.73

Results are shown for models including SNPs at genome-wide significance level (α = 10−7) and at optimized significance threshold (αopt). FH, presence of any family history in 

first-degree relatives. Prevalences of FH for CAD, prostate cancer (PrCA) and T2D are 0.14 (ref. 40), 0.07 (ref. 41) and 0.143 (ref. 42), respectively. Prevalence of FH for T1D 

and Crohn’s disease (CD) are taken to be 0.005 and 0.01, which are the same as the disease prevalence35. For all diseases, except PrCA, the current sample size is shown for 

the first stage of the respective largest GWAS. For PrCA, where a large number of SNPs were followed to stage 2, an effective sample size is shown for stages 1 and 2 combined. 

Results for T1D are shown with or without (in parentheses) contribution of the MHC region. For all diseases except CAD, AUC values are shown corresponding to point estimates 

of hg
2 in Table 1. For CAD, for which direct estimate of hg

2 was not available, a range of values were chosen based on constraints imposed by the observed discoveries. For all traits, 

the underlying effect-size distribution was assumed to follow a mixture of two- or three-exponential distributions, which together with hg
2 was appropriately calibrated to explain 

observed discoveries from the largest GWAS to date.

Table 3 Proportion of cases followed among 20% of subjects with highest polygenic risk

Trait

Current sample  

size (N) Model

N 3N 5N 10N

α = 10−7 αOPT α = 10−7 αOPT α = 10−7 αOPT α = 10−7 αOPT

CD 17,000 SNPs 0.48 0.52 0.58 0.65 0.62 0.72 0.72 0.75

SNPs + FH 0.61 0.65 0.70 0.77 0.75 0.80 0.81 0.83

T1D 16,000 SNPs 0.71 (0.42) 0.71 (0.44) 0.73 (0.48) 0.75 (0.51) 0.75 (0.51) 0.76 (0.54) 0.76 (0.54) 0.77 (0.55)

SNPs + FH 0.91 (0.46) 0.92 (0.48) 0.94 (0.52) 0.95 (0.56) 0.95 (0.56) 0.95 (0.58) 0.95 (0.59) 0.96 (0.60)

T2D 22,000 SNPs 0.28 0.32 0.34 0.48 0.41 0.55 0.52 0.63

SNPs + FH 0.40 0.42 0.43 0.54 0.48 0.60 0.57 0.66

PrCA 24,000 SNPs 0.35 0.35 0.37 0.40 0.39 0.44 0.44 0.48

SNPs + FH 0.40 0.40 0.41 0.44 0.43 0.47 0.47 0.51

CAD 57,000 SNPs 0.29 0.30 0.31 0.34–0.37 0.32–0.34 0.38–0.41 0.36–0.40 0.42–0.45

SNPs + FH 0.42 0.42 0.42–0.43 0.44–0.46 0.43–0.44 0.46–0.49 0.46–0.48 0.49–0.52

Results are shown for models including SNPs at genome-wide significance level (α = 10−7) and at optimized significance threshold (αopt). FH, presence of any family history in 

first-degree relatives. Prevalences of FH for CAD, prostate cancer (PrCA) and T2D are 0.14 (ref. 40), 0.07 (ref. 41), and 0.143 (ref. 42), respectively. Prevalence of FH for T1D 

and Crohn’s disease (CD) are taken to be 0.005 and 0.01 which are the same as the disease prevalence35. For all diseases, except PrCA, the current sample size is shown for 

the first stage of the respective largest GWAS. For PrCA, where a large number of SNPs were followed to stage 2, an effective sample size is shown for stages 1 and 2 combined. 

Results for T1D are shown with or without (in parentheses) contribution of the MHC region. For all diseases except CAD, AUC values are shown corresponding to point estimates of 

hg
2
 available from GWAS studies. For CAD, for which direct estimate of hg

2
 was not available, a range of values were chosen based on constraints imposed by observed discoveries. 

For all traits, the underlying effect-size distribution was assumed to follow a mixture of two- or three-exponential distributions, which together with hg
2
 was appropriately calibrated 

to explain observed discoveries from the largest GWAS to date.

Q15
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in large GWAS can be more liberal than threshold standard (for 
example, P < 5 × 10−8) used for discovery.

We observed that for less common, highly familial conditions, such 
as T1D and Crohn’s disease, risk models that include family history 
and optimal polygenic scores based on current GWAS can identify a 
large majority of cases by targeting a small group of high-risk indi-
viduals (for example, subjects who fall in the highest quintile of risk). 
In contrast, for more common conditions with modest familial com-
ponents, such as T2D, CAD and prostate cancer, risk models based 
on GWAS with current sample sizes (N) or foreseeable sample sizes in 
the near future (for example, 3N) can miss a large proportion (>50%) 
of cases by targeting a small group of high-risk individuals. For these 
common diseases, polygenic models using current GWAS data can 
identify a small minority of the population with elevated risk. Based 
on our model, we suggest that it is necessary to augment sample size 
of current GWAS by at least three times to substantially increase the 
proportion of high-risk populations identified by polygenic models. 
Perhaps one day GWAS or sequencing would be carried out as part 
of standard clinical care and then such information together with 
electronic medical records could be used to build polygenic models 
based on sufficiently large studies.

Consistent with a previous report23, our analysis of T1D with and 
without contribution of the major histocompatibility complex (MHC) 
region highlights the limited incremental discriminatory ability of 
polygenic scores for diseases that have established common and 
strong risk factors. Nevertheless, for most diseases, polygenic scores 
are expected to contribute substantially in addition to family history. 
One could also expect that in the foreseeable future even crude family 
history information, such as the presence or absence of the disease in 
any first-degree relative, will remain an important contributing factor 
for predicting disease risk in the general population. More detailed 
information on extended family history, including age-at-onset infor-
mation, could enhance the predictive utility of these models, especially  
for applications in high-risk families.

Our analysis extends beyond prior reports24–27 to project the pre-
dictive performance of polygenic models, most of which relied on 
simulation studies. A previous report25 had noted that predictive 
performance of models that include all GWAS SNPs in a polygenic 
score without SNP selection depends only on the sample size of the 
training data set and hg

2. More general theory shows that an algorithm 
that includes all SNPs in a model, that is, uses the significance level 
of α = 1, could be poor, and the predictive performance of more 
efficient algorithms is expected to depend on the underlying effect-
size distribution. Previous simulation studies often have relied on 
hypothetical effect-size distributions. Here we used the effect-size 
distributions that are implied by constraints imposed by both known 
discoveries reported from some of the largest GWAS to date and 
recent estimates of heritability to realistically depict the future of 
genetic-risk prediction.

Our results are generally consistent with a recent analysis28 that 
used information on risk in monozygotic twins to examine the abso-
lute limits of personalized medicine achievable by genome sequencing 
under the assumption that such technology can ultimately lead to an 
ideal model that can capture the full spectrum of genetic risk with-
out possibility of any error. In this report, we provide much sharper 
bounds for what can be achieved in practice using current or future 
GWAS by taking into account the likely error associated with estima-
tion of underlying risk that is inevitable because of constraints on 
sample sizes. Emerging effect-size distributions suggest that GWAS 
will require huge sample sizes to approach the ideal predictive power 
associated with additive effects of common SNPs. Using a metric used 

in this report together with the assumption of independent suscepti-
bility alleles across traits, for example, we predict that although GWAS 
in principle can identify 55.1% of the population that might have 
twofold or higher risk than average for at least one of the three com-
mon diseases, CAD, T2D and prostate cancer, the actual proportion 
achievable using current GWAS data is only 10.7% and that tripling 
the sample size could increase this to 33.1%. If the susceptibility alle-
les across these traits are related, however, these proportions could 
be higher.

Here we made projections based on a simple GWAS polygenic 
model–building algorithm6,22 after its optimization with respect to 
the criteria for SNP inclusion. The general framework we constructed 
(Supplementary Note), however, can be used to assess the likely per-
formance of other, possibly even more efficient, model-building strate-
gies. Using this framework, for example, we project that an algorithm 
that uses least absolute shrinkage and selection operator (LASSO)-
type29 thresholds and can analyze all SNPs simultaneously, may out-
perform the standard GWAS polygenic model–building algorithm. 
This may be particularly interesting for large sample sizes and highly 
heritable traits such as height, but we also note that the gains are gener-
ally modest in scope (Supplementary Fig. 2). Simultaneous modeling 
of correlated SNPs in small genomic regions can unmask allelic het-
erogeneity, possibly adding to the overall predictive strength of the 
models8,30. Other strategies may include linear mixed modeling16 and 
Bayesian methods31,32 that can construct polygenic scores based on 
shrinkage estimates for SNP coefficients using specific priors for the 
effect-size distribution. Although the absolute performance of differ-
ent algorithms could be somewhat different across settings, the main 
results we highlight regarding the order of sample sizes required to 
improve risk prediction is intrinsically related to the underlying effect 
sizes and are likely to be observed with other algorithms as well.

Our proposed theoretical framework can be used to speculate on 
the predictive performance of polygenic models that could be built 
based on rare variants. In an additional illustration (Supplementary 

Fig. 3), under a model that allows large number of susceptibility loci 
each containing sets of low-penetrance rare variants, we assessed how 
polygenic models might perform if variants are included in a model 
as individual cofactors versus using a gene-collapsing strategy that 
has been advocated for improving power for association tests33. We 
observed that up to a certain range of sample sizes for the training 
data set, models based on collapsed variables often can perform bet-
ter, apparently because of the improved power for detection of the 
underlying susceptibility loci. For larger sample sizes, however, their 
performance might fall short compared to models based on individual 
variants as collapsed variables, possibly including neutral variants, 
can cause substantial dilution of effects for the susceptibility loci; the 
magnitude of such dilution may not diminish with increasing sample 
size for naive collapsing methods. In the future, it will be of great 
importance to determine the sample sizes at which such inflection 
point would occur for different traits depending on the underlying 
genetic architecture.

Here we used a flexible class of mixture-exponential models to 
specify effect-size distributions. One could specify effect-size distri-
butions using alternate parametric models such as Weibull, gamma 
or beta distributions, all of which can generate L-shaped distributions 
that appear to be natural for specification of effect sizes of common 
SNPs. Although the performance of polygenic models could differ 
widely in principle under different effect-size distributions, addi-
tional analyses (data not shown) indicate that when such models were 
restricted so that they can also explain discoveries and estimates of 
heritabilities reported from current GWAS, each produced results that 
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are qualitatively similar to what we report using the mixture of expo-
nential distributions. For future studies of rare variants, however, the 
range of plausible models for effect-size distributions is substantial, 
and thus, evaluating the likely performance of polygenic models based 
on such variants remains challenging (Supplementary Fig. 3).

In conclusion, we used a newly developed model together with 
empirical observations from large GWAS to comprehensively evalu-
ate future polygenic risk models using common susceptibility SNPs. 
Although our analysis points to challenges for achieving high discrim-
inatory34 power for polygenic risk models, especially for common dis-
eases, it is noteworthy that even models with modest discriminatory 
power can provide important stratification for absolute risk, thus pro-
viding a rationale for potential public health applications such as for 
weighing risks and benefits for a treatment or an intervention34. For 
most common disease, existing models based on established environ-
mental risk factors, if any, also have modest discriminatory power and 
face additional challenges for long-term risk prediction as risk-factor 
history, unlike susceptibility status, can change over the lifetime of an 
individual. In the future, development of robust prediction models 
will need to integrate a spectrum of alleles, from rare to common 
variants and other risk factors as well. The framework outlined in 
this paper could be used to identify challenges and opportunities for 
public health application as well as the required resources needed to 
develop such models.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Underlying polygenic model. We assume Y is the outcome variable and  
X1, …, XM are a set of independent covariates that are potentially predictive 
of Y. Without loss of generality, we will assume all variables are standardized, 
so that E(Y) = 0 and Var(Y) = 1 and similarly E(Xm) = 0 and Var(Xm) = 1 for 
each m.

We assume that the true relationship between outcome and the set of  
covariates can be described by the underlying model (M)

Y X Xm m
m

M

m
m M

M

= + × +
= = +

∑ ∑b e
1

1

1 1

0

where M1 out of the M covariates are truly predictive of Y. We also assume ε,  
the residual term, to be independently distributed of X = (X1, …, XM).

Measure of predictive performance of a model. Now suppose an ‘estimated’ 
prediction model (M ) is built based on a ‘training’ data set of sample size N 
to predict Y using the formula 

Y Xm m m
m

M
 =

=
∑ b g

1

where γm is indicator of whether the variable is selected (γm = 1) or not (γm = 0)  
and bm is the estimate of βm for selected variables. We will denote λ to be a 
generic threshold parameter for the underlying model selection algorithm.

We define the predictive correlation for the model M  to be

R cor Y YN X

m m mm

M

m mm

M
( ) ( , ),M 




= = =

=

∑
∑

e

b b g

b g

1
1

2
1

where the subscript X and ε signify that the correlation coefficient is computed 
with respect to the distribution of X and ε in the underlying population for 
which prediction is desired while the estimated model M  and its associ-
ated parameter estimates (bm and γm, m = 1, 2, …, M) are held fixed. The 
only source of variation of RN ( )M  is due to the randomness of the original  
training data set based on which M  is built. For any fixed N and λ, the expected 
value of RN ( )M  can be approximated as (see Supplementary Note)

m l
b l l

n l l
N

m m mm

M

m mm

M

e N p N

N p N
( )

( , ) ( , )

( , ) ( , )
= =

=

∑
∑
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where

e N Em N m m( , ) ( | ),l b gl= = 1

p N Prm N m( , ) ( ),l gl= =1

and

n l b glm N m mN E( , ) ( | ),= =2 1

GWAS polygenic model–building algorithm. Suppose in a GWAS study, 
independent SNPs are included in a prediction model depending on whether 
the corresponding marginal trend test for association achieves a specified 
significance level α or not. Let Zm denote the association test statistics for the 
mth SNP and Cα/2 denote the critical level for a two-sided test at level α. For 
any SNP that achieves the required significance level, that is, γm = 1, its cor-
responding coefficient in the prediction model could be taken as bm , that is, 
the estimated regression coefficient from the marginal analysis of the SNP.

Based on general theory developed in the Supplementary Note, we show 
that in the above setting the expected value of the PCC of the above polygenic 

model–building algorithm over different GWAS data sets of sample size N 
can be written as

m a
b b b a

n b b a an
N

m N m mm

M

N m m N

e pow N

pow N M M
( )

( ) ( , , )

( ) ( , , ) ( )
=

+ −

=∑ 1
1

1 (( )0
1

1
m

M

=∑
where pow(N,βm,α) denotes the power of the study of size N for detecting an 
effect size of βm at level α, 
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and

n b b aN m m mE Z C( ) | | .= >
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2
2

Based on the formula for eN(βm) and νN(βm) given in the Suppementary 

Note, it is easy to see that as N→`, eN(βm)→βm and n b bN m m( )→ 2
. Thus, 

it follows that as N→`, 

m a m a m bN m
m

M

( ) ( )max max→ = =
=

∑ 2

1

1

Because bm
m

M
2

1

1

=
∑  is the variance of the trait owing to the total additive effects 

of all susceptibility SNPs, mmax = hg
2

, where hg
2 is the total heritability in 

narrow sense.

Evaluation of AUC statistics and other performance measures for binary 

disease outcomes. Previously, several reports2,43,44 have established the rela-
tionship between measures of discriminatory ability of risk models and the 
genetic variance explained by the true underlying polygenic score associated 
with a set of SNPs. To generalize such results when the polygenic score asso-
ciated with a set of SNPs may be estimated with error, we assume that the 
true relationship between the risk of a binary disease outcome D and a set of 
covariates X1, …, XM is given by an underlying logistic model

logit{pr(D X X Xm mm

M
mm M

M= = + + ×= = +∑ ∑1 0
1 1

1

1
| } a b

We assume that a risk-prediction model is built based on a training data set of  
sample size N using the formula logit pr{ ( | } ,D X X

m m mm

M= = + =∑1
1

a b g    
where γm is an indicator of whether the variable is selected (γm=1) or not (γm = 0)  
and bm is the estimate of βm for selected variables. Let

U Xm m m
m

M
 =

=
∑ b g

1

be the estimated risk for a person with covariate profile X in the underlying 
logistic scale. Without loss of generality, we assume each covariate Xm has been 
standardized with respect to its mean and variance of disease free population 
so that E(Xm|D = 0) = 0 and Var(Xm|D = 0) = 1. In the Supplementary Note,  
we show that the distribution of U  in controls (D = 0) and cases (D = 1) for 
large M, M1 and N can be approximated by normal distributions as 

pr(U D N SN
 ∼| ) ( , )= 0 0 2
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It is noteworthy that although the characterization of the distributions of true 
risk U for cases and controls requires a single parameter, namely the vari-
ance of U2,43,44, the characterizations for the corresponding distributions for 
estimated risk U  requires two parameters, namely the variance of U  and its 
covariance with the true risk U.

The AUC, that is, the probability that value of risk score will be greater 
for a randomly selected case than that of a randomly selected control, can be 
approximated as

AUC prN NU U R= > =( ) ( . ) 1 0 0 5Φ

where R
C

S
N

N

N

=  is the predictive correlation measure defined earlier for con-

tinuous outcome. Similarly, using above results, other measures of discrimina-
tory performance of models, such as proportion of cases followed (PCF)2, can 
be also characterized in terms of RN (Supplementary Note).

In the Supplementary Note, we show that the distribution of estimated risk 
U  for subjects conditional on both his/her own disease status, D, and that of 
a relative, DR, can be approximately characterized as 

pr( = 0)U D D N SR N
 ∼| , ( , )= 0 0 2

pr( =1)U D D N k C SR R N N
 ∼| , ( , )= 0 2

pr( = 0)U D D N C SR N N
 ∼| , ( , )=1 2

 and 

pr( =1)U D D N k C SR R N N
 ∼| , ( ) , )= +( )1 1 2

where kR=2−R is the coefficient of relationship. Based on these distributions, 
we derive discriminatory ability of risk models that include both polygenic 
risk scores and family history.

Estimation of effect-size distribution. We extended our previous meth-
ods14,15,45 to obtain realistic estimates of effect-size distribution for all underly-
ing susceptibility SNPs for individual traits by combining information from 
both known discoveries from largest GWAS and estimates of hg

2
 that have 

recently become available for most of the traits we studied. The major steps 
are: (i) identify the largest GWAS, termed the ‘current study’, for each of the 
traits and list ‘observed susceptibility SNPs’ that are discovered through these 
studies; (ii) following the design of the discovery studies (Supplementary 

Table 2), compute the power to detect SNPs with given effect sizes; (iii) obtain 
an estimate effect-size distribution by fitting parametric mixture-exponential 
distribution to observed susceptibility SNPs after accounting for statistical 
power for their discovery and (iv) incorporate an additional mixture compo-
nent to the effect-size distribution that can allow a larger number of SNPs with 
very small effects so that the overall distribution can explain both estimate of 
heritability owing to common variants (hg

2
) and the number of observed dis-

coveries and genetic variances explained in current studies. Below we describe 
the details for each step.

In step (i), for each trait, we identified the largest GWAS to date 
(Supplementary Table 2) and constructed a list of observed susceptibility 
SNPs that could be considered to have been ‘detected’ from this study. All 
independent SNPs that reach genome-wide significance according to speci-
fied criteria for these studies are included in the list of known susceptibility 
SNPs. Some studies used multistage designs and did not follow up previously 
established susceptibility SNPs beyond the first stage. We included such pre-
viously established SNPs in our list if they reached the required threshold 
for follow-up in the first stage of the current study, on the assumption that 
these SNPs would have reached genome-wide significance had they been fol-
lowed up like all other SNPs meeting the same criterion. For each observed 
susceptibility SNP, we obtained the effect size as es = ψ2 × 2f(1 − f), where ψ is 
linear or logistic regression coefficient depending on quantitative or qualita-

tive traits and f is the allele frequency. In the GWAS context, a covariate X in a 
polygenic model is the number of risk alleles associated with a SNP and thus 
following the notation in the main text where a covariate X is assumed to be 
standardized, it follows that b y= −2 1f f( )  and es = β2. To minimize bias 
from the winner’s curse, we estimated effect sizes by excluding discovery-stage 
data whenever replication-phase data were available. Otherwise, we corrected 
for possible bias using statistical techniques46.

In step (ii), we evaluated power for detection for each susceptibility SNP at 
their observed effect sizes following the exact design of the original discovery 
studies (Supplementary Table 2).

In step (iii), we obtained estimate of effect-size distribution by fitting a 
parametric model to the effect sizes for observed susceptibility SNPs. In our 
previous work14,15,45, we have described nonparametric methods for estimat-
ing effect-size distribution in the range of effect sizes for observed suscepti-
bility SNPs. In this report, we considered the use of parametric models that 
can be used to describe distribution of effect sizes beyond the range of known 
discoveries. Specifically, we used the class of mixture of exponential distribu-
tions that allows specification of effect-size distribution in a flexible, weakly 
parametric fashion. The model is very natural as it allows for increasingly large 
number of susceptibility SNPs with decreasingly smaller effects, a common 
pattern that is emerging from GWAS. Mathematically, we assumed that the 
distribution of effect sizes for all underlying susceptibility SNPs is given by

f es p g esh h
h

H

( | ) ( | )q l=
=

∑
1

where θ = (p1, …, pH, λ1, …, λH), with ph being the mixture weight for the 
hth component, h = 1, …, H and g(es|λh) is an exponential distribution with  
mean 1/lh. Noting that the set of K observed susceptibility SNPs can be viewed 
as a random sample from the set of all underlying susceptibility SNPs, with 
probability of sampling for each SNP proportional to its power for discovery, 
we constructed a likelihood as

L
f es pow es N

f es pow es N

i
K

i i
( )

( | ) ( | , )

{ ( | ) ( | ,
q

q a

q
=

∫
=Π 1 study

study aa ) }des K

where powstudy(esi|N,α) is the power to detect a SNP with effect size es in the 
current GWAS of size N at a significance level of α. We used Bayesian methods 
to estimate the parameters of the mixture model based on the above likeli-
hood and non-informative priors for the parameter vectors p = (p1, …, pH) 
and l = (λ1,…, λH). Specifically, we assumed a discrete Dirichlet distribution 
for p that leads to uniform prior for each of the ph, h = 1,…, H marginally. 
We assumed λh, h = 1, …, H to be independently distributed each following 
a gamma distribution with shape and scale parameters a = 0.5 and b = 2 × 
104, respectively. Posterior means for all parameters were obtained based on 
Markov chain Monte Carlo algorithms. For each trait, among several fitted 
mixture models with varying H (up to 3), we selected the best mixture model 
on the basis of the deviance information criterion47. For all traits except pros-
tate cancer (PrCA) and CAD, a two-component (H = 2) mixture model was the 
best fitted distribution. For PrCA and CAD, a single exponential distribution 
(H = 1) was adequate.

In step (iv), we incorporated an additional mixture component to the effect-
size distribution estimated in step (iii) so that the overall distribution can be 

used to describe the effect sizes for all SNPs that contribute to hg m
m

M
2 2

1

1
=

=
∑ b . 

We observed that if we had assumed that the parametric effect-size distribution  
estimated based on known loci can be extrapolated to describe the effect sizes 
for all susceptibility loci explaining hg

2, then the expected number of discov-
eries and the corresponding heritabilities explained in the current GWAS 
will be substantially larger than those empirically observed in these studies 
(Supplementary Table 1). Thus, it is very likely that the true effect-size distri-
bution for all susceptibility SNPs contributing to narrow-sense heritability is 
more skewed toward smaller effects. To obtain a properly calibrated effect-size 
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distribution for all susceptibility SNPs, we thus added an additional mixture 
component to the fitted effect-size distribution that we estimated based on 
known loci. We assumed

f es p f es p p g esH H H h h

h

H

( | ) ( | ) ( ) ( | )q l l= + −+ + +
=

∑1 1 1
1

1  

where the summation in the right side corresponds to the fitted mixture 
model based on known loci. For any given value of hg

2, we found the value 
of parameters pH + 1 and λH + 1 for the additional component by equating the 
expected and observed number of discoveries and the corresponding herit-
ability explained in the current largest GWAS by solving the equations

M Z C M pow es N f es esobs m
m

M

= >



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≈ ∫
=

∑1
21

1
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and
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


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≈ ∫
=
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2

21

1

11 | | ( | , ) ( |study ))des

where α is the genome-wide significance level used for discovery and M1 is 
defined by

h M es f es esg m
m

M
2 2

1
1

1
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=
∑ b q( | )d

We solved for pH + 1 and λH + 1 by performing a grid-search within the ranges 
0.01 ≤ pH + 1 ≤ 0.99 and l l l 

H H H≤ ≤ ×+1 20 , where the latter constraint is 

(3)(3)

(4)(4)

imposed to allow the mean of the new component to be smaller than that of 
the smallest component of the fitted distribution by a factor of up to 20-fold. 
For traits for which estimates of hg

2
 and associated confidence intervals were 

available, values of hg
2

 were chosen to be at their point estimates (Tables 2  

and 3) or varied within the range of their confidence intervals (Figs. 2  

and 3), and for each such value of hg
2 a corresponding effect-size distribution  

was obtained by solving the above equations. For total cholesterol (TC), LDL 
and CAD, for which direct estimates of hg

2
 were not available, we varied the 

value of hg
2

 to be within 20–80% of the range of total heritability of these 
traits that are available from family studies. For CAD, however, the range 
of hg

2 for which solutions could be found for the equations (3) and (4) were 
severely restricted. In particular, it appears that the limited number of findings  
(21 SNPs) from the very large existing GWAS (N = 75,000) of this trait auto-
matically imposes major constraint on the upper bound of hg

2, at least for the 
class of effect-size distributions we considered.
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